Đáp án đúng: A
Suy ra $cos^2(\alpha) = \frac{1}{1 + tan^2(\alpha)} = \frac{1}{1 + (-2\sqrt{2})^2} = \frac{1}{1 + 8} = \frac{1}{9}$.
Do đó $cos(\alpha) = \pm \frac{1}{3}$.
Vì $0^\circ < \alpha < 180^\circ$ và $tan(\alpha) = -2\sqrt{2} < 0$ nên $90^\circ < \alpha < 180^\circ$. Trong khoảng này, $cos(\alpha) < 0$.
Vậy $cos(\alpha) = -\frac{1}{3}$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài