
*\(\Delta ABC\) đều \(\Rightarrow BC=1\).
*\(\Delta ACD\) cân tại \(A\) có \(CD=\sqrt{A{{C}^{2}}+A{{D}^{2}}-2AC.AD.\cos 120{}^\circ }=\sqrt{3}\).
*\(\Delta ABD\) vuông cân tại \(A\) có \(BD=\sqrt{2}\).
*\(\Delta BCD\) có \(C{{D}^{2}}=B{{C}^{2}}+B{{D}^{2}}\)\(\Rightarrow \Delta BCD\) vuông tại \(B\).
Dựng đường thẳng \(d\) qua \(G\)và song song \(CD\), cắt \(BC\) tại \(M\).
Ta có \(MG\ \text{//}\ CD\)\(\Rightarrow \left( AG,CD \right)=\left( AG,MG \right)\).
Gọi \(I\) là trung điểm của \(BC\).
Xét \(\Delta BDI\) vuông tại \(B\) có \(DI=\sqrt{B{{D}^{2}}+B{{I}^{2}}}\)\(=\sqrt{2+{{\left( \frac{1}{2} \right)}^{2}}}=\frac{3}{2}\).
Ta có:
\(\frac{IM}{IC}=\frac{MG}{CD}=\frac{IG}{ID}=\frac{1}{3}\)\(\Rightarrow IM=\frac{1}{3}.IC\)\(=\frac{1}{3}.\frac{BC}{2}\)\(=\frac{1}{6}\);
\(MG=\frac{1}{3}.CD=\frac{\sqrt{3}}{3}\); \(IG=\frac{1}{3}.ID=\frac{1}{2}\).
Xét \(\Delta AIM\) vuông tại \(I\) có:
\(AM=\sqrt{A{{I}^{2}}+I{{M}^{2}}}\)\(=\sqrt{{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \frac{1}{6} \right)}^{2}}}=\frac{\sqrt{7}}{3}\).
\(\cos \widehat{AID}=\frac{A{{I}^{2}}+I{{D}^{2}}-A{{D}^{2}}}{2AI.ID}\)\(=\frac{{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \frac{3}{2} \right)}^{2}}-{{1}^{2}}}{2.\frac{\sqrt{3}}{2}.\frac{3}{2}}=\frac{4\sqrt{3}}{9}\).
\(\begin{array}{*{35}{l}} \text{AG} & =\sqrt{\text{A}{{\text{I}}^{2}}+\text{I}{{\text{G}}^{2}}-2\text{AIIIG}\cdot \cos \widehat{\text{AID}}} \\ {} & =\sqrt{{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \frac{1}{2} \right)}^{2}}-2\cdot \frac{\sqrt{3}}{2}\cdot \frac{1}{2}\cdot \frac{4\sqrt{3}}{9}}=\frac{\sqrt{3}}{3}. \\ \end{array}\)
Xét \(\Delta AMG\) có:
\(\begin{array}{*{35}{l}} \cos (\text{AG},\text{MG}) & =|\cos \widehat{\text{AGM}}|=\left| \frac{\text{A}{{\text{G}}^{2}}+\text{G}{{\text{M}}^{2}}-\text{A}{{\text{M}}^{2}}}{2\cdot \text{AG}\cdot \text{GM}} \right| \\ {} & =\left| \frac{{{\left( \frac{\sqrt{3}}{3} \right)}^{2}}+{{\left( \frac{\sqrt{3}}{3} \right)}^{2}}-{{\left( \frac{\sqrt{7}}{3} \right)}^{2}}}{2\cdot \frac{\sqrt{3}}{3}\cdot \frac{\sqrt{3}}{3}} \right|=\frac{1}{6}\approx 0,17. \\ \end{array}\)