JavaScript is required

Một sân vận động với sân bóng phẳng hình chữ nhật có chấm trắng trung tâm là nơi giao bóng, một đường kẻ vạch chia đôi sân và các khán đài. Khán đài A gồm những dãy ghế nằm vuông góc với vạch chia đôi sân có độ cao tăng dần (các ghế cùng hàng thì cùng độ cao so với mặt sân). Chọn hệ trục tọa độ \(Oxyz\) sao cho \(O\) trùng với điểm giao bóng, mặt phẳng \(Oxy\) trùng với mặt sân, trục \(Ox\) trùng với vạch chia đôi sân, tia \(Oz\) vuông góc với mặt sân (đơn vị đo lấy theo mét).

Một khán giả ngồi tại vị trí \(M\) của khán đài A, có hình chiếu vuông góc lên mặt phẳng chứa sân là một điểm thuộc \(Ox.\) Góc hợp bởi \(OM\) và mặt sân là \(\alpha \) với \(\sin \alpha =\frac{1}{3},\) nếu người này di chuyển 10 (m) trên hàng ngang đó đến ngồi tại một vị trí \(N\) thì góc hợp bởi \(ON\) và mặt sân là \(\beta \) với \(\sin \beta =\frac{\sqrt{10}}{10}.\) Gọi \(h~\left( m \right)\) là độ cao tại \(M\) so với mặt sân.

a) Điểm \(M\) có cao độ bằng \(0\).

b) \(OM=3h\).

c) Điểm \(N\) có cùng tung độ với điểm \(M\).

d) \(h=10~m\).

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 02 được biên soạn nhằm hỗ trợ học sinh ôn luyện hiệu quả, làm quen với cấu trúc đề thi chính thức và nâng cao kỹ năng giải toán. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình THPT, với 70-80% nội dung thuộc lớp 12, phần còn lại được chọn lọc từ chương trình lớp 11 và lớp 10, đảm bảo sự kết nối kiến thức giữa các lớp học. Các chuyên đề trọng tâm như hàm số, đạo hàm, số phức, hình học không gian, tổ hợp - xác suất và phương pháp tọa độ trong mặt phẳng đều được tích hợp đầy đủ trong đề thi. Cấu trúc đề thi gồm 3 phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, tạo cơ hội để học sinh tiếp cận và giải quyết các bài toán từ cơ bản đến nâng cao. Đây là tài liệu ôn tập quan trọng giúp học sinh xây dựng nền tảng vững chắc, rèn luyện tư duy toán học và đạt kết quả cao trong kỳ thi tốt nghiệp THPT 2025.

14/04/2025
0 lượt thi

Câu hỏi liên quan