Cho dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát: \({{u}_{n}}=\frac{2n}{n+1}\). Ba số hạng đầu của dãy số đã cho lần lượt là
Bộ đề kiểm tra học kì I môn Toán (năm học 2023 - 2024) của Cụm Trường Miền Trung bao gồm: 1. Trường THPT Quế Sơn – H. Quế Sơn – Quảng Nam 2. Trường THPT Lê Lợi – TP. Đông Hà – Quảng Trị 3. Trường THPT Phạm Phú Thứ – H. Hoà Vang – Đà Nẵng
Câu hỏi liên quan
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành \(200\) đô la, và trong mỗi tuần tiếp theo, cô đã thêm \(16\) đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá \(1\,000\) đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Cho dãy số \(\left( {{u}_{n}} \right)\), biết \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=-1 \\ {{u}_{n+1}}={{u}_{n}}+3 \\ \end{array} \right.\) với \(n\ge 0\). Ba số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trong các dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát \({{u}_{n}}\) sau đây, đâu là dãy số giảm?
Bạn Lan có một cái lọ. Ngày thứ nhất bạn bỏ vào lọ 1 viên kẹo, ngày thứ hai bạn bỏ vào 2 viên kẹo, ngày thứ ba bạn bỏ vào 4 viên kẹo. Số viên kẹo bỏ vào lọ trong ngày hôm sau sẽ gấp đôi số viên kẹo bỏ vào lọ trong ngày hôm trước. Biết rằng sau khi bỏ hết số kẹo ở ngày thứ 12 thì lọ đầy. Hỏi ước tính ở ngày thứ mấy, số kẹo trong lọ chiếm \(\frac{1}{4}\) lọ?
Cho dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{2n}{3n+2},n\in {{\mathbb{N}}^{\text{*}}}\). Khẳng định nào sau đây đúng?
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Tìm số nguyên \(m\) nhỏ nhất để dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{mn+1}{n+1}\) là dãy số tăng.
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
+ Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
+ Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{2}}}\)).
Cứ tiếp tục quá trình như vậy (ở bước thứ \(n\), bỏ đi \({{3}^{n-1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{n}}}\)).
Tổng diện tích các tam giác đã bỏ đi bằng bao nhiêu?
Trong các dãy số sau, dãy số nào là dãy số vô hạn?
Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số giảm?
Mùa hè năm 2024, để chuẩn bị cho "học kì quân đội" dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong \(45\) ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ \(11\), do số lượng thành viên tham gia tăng lên, nên lượng thực phẩm tiêu thụ tăng lên \(10\%\) mỗi ngày (ngày sau tăng \(10\%\) so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày?
Cho dãy số \(\left( {{u}_{n}} \right)\), biết \({{u}_{n}}=\frac{n}{{{2}^{n}}-1}\). Ba số hạng đầu tiên của dãy số là
Tính tổng \(M=2+4+6+...+(2n+4)\)
Anh Bình là nhân viên của một công ty Từ ngày 1/2/2024 anh Bình được nâng lương lên bậc 4, mức lương anh hiện hưởng là \(11\) \(718\) \(750\) đồng mỗi tháng. Theo quy định của công ty, nếu không bị kỉ luật, không có khen thưởng đặc biệt thì cứ sau \(3\) năm anh Bình sẽ được nâng một bậc lương, tăng thêm \(25\%\) so với bậc lương trước, tối đa là bậc 7. Khi hết bậc 7 sẽ chuyển sang vượt khung. Lương vượt khung năm sau cao hơn năm trước \(1\%\) và vẫn nhận hàng tháng. Lương bậc 1 sẽ được tính sau khi hết đúng \(1\) năm tập sự. Anh Bình là người rất nghiêm túc, không vi phạm kỉ luật. Anh dự định sẽ làm việc \(30\) năm ở công ty này rồi nghỉ hưu.
Anh Bình làm ở công ty A năm đầu tiên với mức lương khởi điểm là 5.000.000 đồng/tháng. Từ năm thứ hai trở đi, mỗi năm lương của anh Bình tăng thêm \(15\%\) so với lương của năm trước đó. Hỏi tổng số tiền lương anh Bình nhận được trong 5 năm làm việc là bao nhiêu?
Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn Thần đèn cho chàng ba điều ước Aladin ước \(2\) điều đầu tiên tùy thích, nhưng điều ước thứ \(3\) của chàng là: "Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay". Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau.
Một bệnh nhân hàng ngày phải uống \(150mg\) thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn \(6%\) lượng thuốc của ngày hôm trước.
Các mệnh đề sau đúng hay sai?
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.