Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số bị chặn?
Bộ đề kiểm tra học kì I môn Toán (năm học 2023 - 2024) của Cụm Trường Miền Trung bao gồm: 1. Trường THPT Quế Sơn – H. Quế Sơn – Quảng Nam 2. Trường THPT Lê Lợi – TP. Đông Hà – Quảng Trị 3. Trường THPT Phạm Phú Thứ – H. Hoà Vang – Đà Nẵng
Câu hỏi liên quan
Cho dãy số \(\left( {{u}_{n}} \right)\), biết \({{u}_{n}}=\frac{n}{{{2}^{n}}-1}\). Ba số hạng đầu tiên của dãy số là
Biết rằng dãy số \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=\sqrt{2} \\ {{u}_{n+1}}=\sqrt{{{u}_{n}}+2} \\\end{array} \right.\) bị chặn trên bởi \(a\). Tìm \(a\).
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Anh Bình là nhân viên của một công ty Từ ngày 1/2/2024 anh Bình được nâng lương lên bậc 4, mức lương anh hiện hưởng là \(11\) \(718\) \(750\) đồng mỗi tháng. Theo quy định của công ty, nếu không bị kỉ luật, không có khen thưởng đặc biệt thì cứ sau \(3\) năm anh Bình sẽ được nâng một bậc lương, tăng thêm \(25\%\) so với bậc lương trước, tối đa là bậc 7. Khi hết bậc 7 sẽ chuyển sang vượt khung. Lương vượt khung năm sau cao hơn năm trước \(1\%\) và vẫn nhận hàng tháng. Lương bậc 1 sẽ được tính sau khi hết đúng \(1\) năm tập sự. Anh Bình là người rất nghiêm túc, không vi phạm kỉ luật. Anh dự định sẽ làm việc \(30\) năm ở công ty này rồi nghỉ hưu.
Một người gửi tiết kiệm \(700\) triệu đồng vào một ngân hàng với lãi suất \(0,5%\)/tháng theo hình thức lãi kép. Kể từ lúc gửi cứ sau \(1\) tháng anh ta lại rút ra \(10\) triệu để chi tiêu (tháng cuối cùng nếu tài khoản không đủ \(10\) triệu thì rút hết). Hỏi sau thời gian bao nhiêu tháng kể từ ngày gửi tiền, tài khoản tiền gửi của người đó về \(0\) đồng? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi tiết kiệm).
Trong các dãy số sau, dãy số nào là dãy số vô hạn?
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{1}}=1,{{u}_{n+1}}=\frac{1}{3}\left( 2{{u}_{n}}+\frac{n-1}{{{n}^{2}}+3n+2} \right);n\in {{\mathbb{N}}^{\text{*}}}\).
Khi đó \({{u}_{2023}}\) bằng? (Làm tròn kết quả đến chữ số thập phân thứ tư).
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành \(200\) đô la, và trong mỗi tuần tiếp theo, cô đã thêm \(16\) đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá \(1\,000\) đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Số hạng thứ ba của dãy số \(\left\{ \begin{align} & {{u}_{1}}=2\,022 \\ & {{u}_{n+1}}={{u}_{n}}-n \\ \end{align} \right.\) bằng
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Cho dãy số \(\left( {{u}_{n}} \right)\), với \({{u}_{n}}=3n-10.\) Khi đó, \({{u}_{15}}\) bằng:
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Cho dãy số \(\left( u{}_{n} \right)\) có số hạng tổng quát \({{u}_{n}}=\frac{2}{n}.\) Khẳng định nào sau đây đúng?
Dãy số nào sau đây là dãy số tăng?
Hùng đang tiết kiệm để mua một cây đàn piano có giá \(142\) triệu đồng. Trong tháng đầu tiên, anh ta để dành được \(20\) triệu đồng. Mỗi tháng tiếp theo anh ta để dành được \(3\) triệu đồng và đưa vào số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
+ Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
+ Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{2}}}\)).
Cứ tiếp tục quá trình như vậy (ở bước thứ \(n\), bỏ đi \({{3}^{n-1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{n}}}\)).
Tổng diện tích các tam giác đã bỏ đi bằng bao nhiêu?
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{n}}=\frac{n+1}{2n-1}\) với \(n\in{{\mathbb{N}}^{\text{*}}}\).
Tìm số hạng \({{u}_{3}}\).
Mùa hè năm 2024, để chuẩn bị cho "học kì quân đội" dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong \(45\) ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ \(11\), do số lượng thành viên tham gia tăng lên, nên lượng thực phẩm tiêu thụ tăng lên \(10\%\) mỗi ngày (ngày sau tăng \(10\%\) so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày?
Tổng \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{{{2}^{n}}}+\ldots \) bằng