JavaScript is required

Câu hỏi:

Cho tam giác \(A B C\), xét các bất đẳng thức sau:

I. \(|a-b|

II. \(a

III. \(m_{a}+m_{b}+m_{c}

Hỏi khẳng định nào sau đây đúng?

A.

Chỉ II, III.

B.

Chỉ I, III.

C.

Cả I, II, III.

D.

Chỉ I, II.

Trả lời:

Đáp án đúng: C


Ta có \(I\). và II. đúng vì đây là bất đẳng thức tam giác

Ta có: \(m_{a}^{2}=\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}=\frac{(b+c)^{2}+(b-c)^{2}-a^{2}}{4}\).

Vì \(|b-c|<a \Rightarrow(b-c)^{2}<a^{2} \Rightarrow m_{a}^{2}<\frac{(b+c)^{2}}{4} \Leftrightarrow m_{a}<\frac{b+c}{2}\).

Tương tự ta có: \(m_{b}<\frac{a+c}{2} ; m_{c}<\frac{a+c}{2}\).

Do đó: \(m_{a}+m_{b}+m_{c}<a+b+c\).

Vậy III. Đúng.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan