Một hộp đựng 5 chai thuốc trong đó có 1 chai thuốc giả. Người ta lần lượt kiểm tra từng chai cho đến khi phát hiện được chai thuốc giả thì thôi (giả thiết các chai thuốc phải qua kiểm tra mới xác định được là thuốc giả hay tốt). Thì luật phân phối xác suất của số chai thuốc được kiểm tra theo công thức:
Trả lời:
Đáp án đúng:
The question asks for the probability distribution of the number of bottles tested until the fake bottle is found. Since there's only one fake bottle among 5, and the testing stops when the fake one is found, the number of bottles tested can be 1, 2, 3, 4, or 5.
Let X be the number of bottles tested. We have the following cases:
- X = 1: The fake bottle is found in the first test. Probability is P(X=1) = 1/5.
- X = 2: The fake bottle is found in the second test. This means the first bottle wasn't fake. Probability is P(X=2) = (4/5) * (1/4) = 1/5.
- X = 3: The fake bottle is found in the third test. This means the first two bottles weren't fake. Probability is P(X=3) = (4/5) * (3/4) * (1/3) = 1/5.
- X = 4: The fake bottle is found in the fourth test. This means the first three bottles weren't fake. Probability is P(X=4) = (4/5) * (3/4) * (2/3) * (1/2) = 1/5.
- X = 5: The fake bottle is found in the fifth test. This means the first four bottles weren't fake. Probability is P(X=5) = (4/5) * (3/4) * (2/3) * (1/2) * (1/1) = 1/5.
Thus, the probability of testing k bottles (k = 1, 2, 3, 4, 5) is the same and equals 1/5.





