Trả lời:
Đáp án đúng: D
The function is \(f(x) = \frac{(\sqrt{x} - 1)^2}{x}\). We need to find \(f'(0.01)\). First, simplify \(f(x)\):
\[f(x) = \frac{x - 2\sqrt{x} + 1}{x} = 1 - \frac{2}{\sqrt{x}} + \frac{1}{x} = 1 - 2x^{-1/2} + x^{-1}\]
Now, find the derivative \(f'(x)\):
\[f'(x) = 0 - 2(-\frac{1}{2})x^{-3/2} - x^{-2} = x^{-3/2} - x^{-2} = \frac{1}{x\sqrt{x}} - \frac{1}{x^2}\]
Evaluate \(f'(0.01)\):
\[f'(0.01) = \frac{1}{0.01\sqrt{0.01}} - \frac{1}{(0.01)^2} = \frac{1}{0.01 \cdot 0.1} - \frac{1}{0.0001} = \frac{1}{0.001} - \frac{1}{0.0001} = 1000 - 10000 = -9000\]
There seems to be no correct option available.
40 câu hỏi 60 phút





