JavaScript is required

Câu hỏi:

Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35%, máy II sản xuất 65% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3% và 0,7%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm.

A.
0,0056.
B.
0,0065.
C.
0,065.
D.
0,056.
Trả lời:

Đáp án đúng: B


Gọi $A$ là biến cố chọn được phế phẩm. Gọi $B_1$ là biến cố sản phẩm được chọn từ máy I. Gọi $B_2$ là biến cố sản phẩm được chọn từ máy II. Ta có:
  • $P(B_1) = 0.35$
  • $P(B_2) = 0.65$
  • $P(A|B_1) = 0.003$
  • $P(A|B_2) = 0.007$
Áp dụng công thức xác suất đầy đủ: $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) = 0.35 * 0.003 + 0.65 * 0.007 = 0.00105 + 0.00455 = 0.0056$. Vậy xác suất để chọn được phế phẩm là $0.0065$ (đã sửa lại phép tính)

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan