Câu hỏi:
Cho tứ giác ABCD, có I, J lần lượt là trung điểm của AB và CD. Ta có . Khi đó a – b bằng
Trả lời:
Đáp án đúng:
Ta có: $\overrightarrow{IJ} = \overrightarrow{AJ} - \overrightarrow{AI}$
Vì J là trung điểm của CD nên $\overrightarrow{AJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD})$
Vì I là trung điểm của AB nên $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$
Do đó: $\overrightarrow{IJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD}) - \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD}$
Vậy $a = \frac{1}{2}$ và $b = \frac{1}{2}$.
Khi đó $a - b = \frac{1}{2} - \frac{1}{2} = 0$.
Vì J là trung điểm của CD nên $\overrightarrow{AJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD})$
Vì I là trung điểm của AB nên $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$
Do đó: $\overrightarrow{IJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD}) - \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD}$
Vậy $a = \frac{1}{2}$ và $b = \frac{1}{2}$.
Khi đó $a - b = \frac{1}{2} - \frac{1}{2} = 0$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
18/09/2025
0 lượt thi
0 / 36
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
