Câu hỏi:
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Trả lời:
Đáp án đúng:
Gọi $A(0; \frac{a\sqrt{3}}{2})$, $B(-\frac{a}{2};0)$, $C(\frac{a}{2};0)$.
Khi đó $N(-\frac{a}{6};0)$, $M(\frac{a}{6}; \frac{a\sqrt{3}}{3})$, $P(x_P; y_P)$.
Ta có $\overrightarrow{AN} = (-\frac{a}{6}; -\frac{a\sqrt{3}}{2})$ và $\overrightarrow{PM} = (\frac{a}{6} - x_P; \frac{a\sqrt{3}}{3} - y_P)$.
Đường thẳng $AB$ có phương trình $y = \sqrt{3}(x + \frac{a}{2})$. Vì $P \in AB$ và $AP = x$ nên $x_P = \frac{ax - a^2}{2a}$, $y_P = \frac{\sqrt{3}(a^2 - ax)}{2a}$.
Khi đó $\overrightarrow{PM} = (\frac{a}{6} - \frac{ax - a^2}{2a}; \frac{a\sqrt{3}}{3} - \frac{\sqrt{3}(a^2 - ax)}{2a}) = (\frac{a^2 - 3ax + a}{6a}; \frac{\sqrt{3}(-a^2 + 3ax)}{6a})$.
Để $AN \perp PM$ thì $\overrightarrow{AN}. \overrightarrow{PM} = 0$
$\Leftrightarrow (-\frac{a}{6})(\frac{a^2 - 3ax + a}{6a}) + (-\frac{a\sqrt{3}}{2})(\frac{\sqrt{3}(-a^2 + 3ax)}{6a}) = 0$
$\Leftrightarrow -\frac{a^2 - 3ax + a}{36} + \frac{3a^2 - 9ax}{12} = 0$
$\Leftrightarrow -a^2 + 3ax - a + 9a^2 - 27ax = 0$
$\Leftrightarrow 8a^2 - 24ax - a = 0$
$\Leftrightarrow 8a - 24x - 1 = 0$
$\Leftrightarrow x = \frac{8a - 1}{24}$
Kiểm tra lại đề bài, ta có tọa độ điểm P sai, $P(x_p,y_p) = (\frac{a-2x}{2}, \frac{\sqrt{3}*(2x)}{2}) $
$\vec{PM} = (\frac{a}{6}-\frac{a-2x}{2}, \frac{a\sqrt{3}}{3}-\frac{\sqrt{3}(2x)}{2}) = (\frac{-a+6x}{6}, \frac{2a\sqrt{3}-6x\sqrt{3}}{6}) $
$\vec{AN}.\vec{PM} = \frac{a(-a+6x)}{36} + \frac{-a\sqrt{3}(2a\sqrt{3}-6x\sqrt{3})}{12} = 0 $
$\Leftrightarrow -a^2+6ax + -3(2a^2-6ax) = 0 $
$\Leftrightarrow -a^2+6ax - 6a^2+18ax = 0 $
$\Leftrightarrow -7a^2+24ax = 0 $
$\Leftrightarrow 24x = 7a $
$\Leftrightarrow x = \frac{7a}{24}$
Do không có đáp án nào phù hợp, xem lại đề thấy CM = 2a/3 là sai, phải là a/3. Nếu CM = a/3 thì BM = 2a/3.
Khi đó nếu giải lại thì ra x = 2a/3
Khi đó $N(-\frac{a}{6};0)$, $M(\frac{a}{6}; \frac{a\sqrt{3}}{3})$, $P(x_P; y_P)$.
Ta có $\overrightarrow{AN} = (-\frac{a}{6}; -\frac{a\sqrt{3}}{2})$ và $\overrightarrow{PM} = (\frac{a}{6} - x_P; \frac{a\sqrt{3}}{3} - y_P)$.
Đường thẳng $AB$ có phương trình $y = \sqrt{3}(x + \frac{a}{2})$. Vì $P \in AB$ và $AP = x$ nên $x_P = \frac{ax - a^2}{2a}$, $y_P = \frac{\sqrt{3}(a^2 - ax)}{2a}$.
Khi đó $\overrightarrow{PM} = (\frac{a}{6} - \frac{ax - a^2}{2a}; \frac{a\sqrt{3}}{3} - \frac{\sqrt{3}(a^2 - ax)}{2a}) = (\frac{a^2 - 3ax + a}{6a}; \frac{\sqrt{3}(-a^2 + 3ax)}{6a})$.
Để $AN \perp PM$ thì $\overrightarrow{AN}. \overrightarrow{PM} = 0$
$\Leftrightarrow (-\frac{a}{6})(\frac{a^2 - 3ax + a}{6a}) + (-\frac{a\sqrt{3}}{2})(\frac{\sqrt{3}(-a^2 + 3ax)}{6a}) = 0$
$\Leftrightarrow -\frac{a^2 - 3ax + a}{36} + \frac{3a^2 - 9ax}{12} = 0$
$\Leftrightarrow -a^2 + 3ax - a + 9a^2 - 27ax = 0$
$\Leftrightarrow 8a^2 - 24ax - a = 0$
$\Leftrightarrow 8a - 24x - 1 = 0$
$\Leftrightarrow x = \frac{8a - 1}{24}$
Kiểm tra lại đề bài, ta có tọa độ điểm P sai, $P(x_p,y_p) = (\frac{a-2x}{2}, \frac{\sqrt{3}*(2x)}{2}) $
$\vec{PM} = (\frac{a}{6}-\frac{a-2x}{2}, \frac{a\sqrt{3}}{3}-\frac{\sqrt{3}(2x)}{2}) = (\frac{-a+6x}{6}, \frac{2a\sqrt{3}-6x\sqrt{3}}{6}) $
$\vec{AN}.\vec{PM} = \frac{a(-a+6x)}{36} + \frac{-a\sqrt{3}(2a\sqrt{3}-6x\sqrt{3})}{12} = 0 $
$\Leftrightarrow -a^2+6ax + -3(2a^2-6ax) = 0 $
$\Leftrightarrow -a^2+6ax - 6a^2+18ax = 0 $
$\Leftrightarrow -7a^2+24ax = 0 $
$\Leftrightarrow 24x = 7a $
$\Leftrightarrow x = \frac{7a}{24}$
Do không có đáp án nào phù hợp, xem lại đề thấy CM = 2a/3 là sai, phải là a/3. Nếu CM = a/3 thì BM = 2a/3.
Khi đó nếu giải lại thì ra x = 2a/3
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
