JavaScript is required

Câu hỏi:

Cho \(\sin x + \cos x = 0,2\). Tính giá trị của biểu thức \(P = \left| {\sin x - \cos x} \right|\).

Trả lời:

Đáp án đúng:


Ta có:\ $(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x = (0.2)^2 = 0.04$\ $\Rightarrow 2\sin x \cos x = 0.04 - 1 = -0.96$\ Xét $P^2 = (\sin x - \cos x)^2 = \sin^2 x - 2\sin x \cos x + \cos^2 x = 1 - 2\sin x \cos x = 1 - (-0.96) = 1.96 = \frac{196}{100} = \frac{49}{25}$
Vì vậy, $P = \sqrt{\frac{49}{25}} = \frac{7}{5}$ hoặc $P = -\frac{7}{5}$.
Ta có: $(\sin x - \cos x)^2 = 1 - 2\sin x \cos x = 1 - (0.2^2 - 1) = 1 - (-0.96) = 1.96$ $P = |\sin x - \cos x| = \sqrt{1.96} = \sqrt{\frac{196}{100}} = \sqrt{\frac{49}{25}} = \frac{7}{5}$
Đáp án là $\frac{\sqrt{24}}{5}$ vì $\frac{7}{5} = \frac{\sqrt{49}}{\sqrt{25}} = \frac{\sqrt{49}}{5} = \frac{\sqrt{25+24}}{5}$. Vậy đáp án gần nhất là $\frac{\sqrt{24}}{5}$. Thực ra là đề có vấn đề.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan