JavaScript is required

Câu hỏi:

Cho mẫu số liệu sau:

10; 3; 6; 9; 15.

Tìm độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần trăm).

A.

A. 3,03;

B.

B. 4,03;

C.

C. 5,03;

D.

D. 6,03.

Trả lời:

Đáp án đúng:


Để tính độ lệch chuẩn, ta thực hiện các bước sau: 1. Tính trung bình cộng của mẫu số liệu: $\bar{x} = \frac{10 + 3 + 6 + 9 + 15}{5} = \frac{43}{5} = 8.6$ 2. Tính phương sai: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = \frac{(10-8.6)^2 + (3-8.6)^2 + (6-8.6)^2 + (9-8.6)^2 + (15-8.6)^2}{5-1} = \frac{1.96 + 31.36 + 6.76 + 0.16 + 40.96}{4} = \frac{81.2}{4} = 20.3$ 3. Tính độ lệch chuẩn: $s = \sqrt{s^2} = \sqrt{20.3} \approx 4.5055$. Tuy nhiên, đề bài không nói rõ là độ lệch chuẩn mẫu hay độ lệch chuẩn quần thể. Nếu tính theo độ lệch chuẩn quần thể, ta có $s^2 = \frac{81.2}{5} = 16.24$ và $s = \sqrt{16.24} \approx 4.03$. Đáp án 4,03 gần đúng hơn nếu tính theo độ lệch chuẩn quần thể.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan