Câu hỏi:
Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
A.
A. \(\overrightarrow {AN} \) = \( - \overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} \);
B.
B. \(\overrightarrow {AN} \) = \(\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} \);
C.
C. \(\overrightarrow {AN} \) = \( - \overrightarrow {AC} - \frac{1}{2}\overrightarrow {AB} \);
D.
D. \(\overrightarrow {AN} \) = \(\overrightarrow {AC} - \frac{1}{2}\overrightarrow {AB} \).
Trả lời:
Đáp án đúng: B
Ta có: $\overrightarrow{AN} = \overrightarrow{AD} + \overrightarrow{DN}$
Mà $\overrightarrow{AD} = \overrightarrow{BC}$ và $\overrightarrow{DN} = -\overrightarrow{CN} = -\frac{1}{2}\overrightarrow{CD} = -\frac{1}{2}\overrightarrow{AB}$
Do đó, $\overrightarrow{AN} = \overrightarrow{BC} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \frac{3}{2}\overrightarrow{AB}$
Vì ABCD là hình bình hành nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ hay $\overrightarrow{AD} = \overrightarrow{AC} - \overrightarrow{AB}$
Mặt khác, $AM = \frac{1}{3}AB$ và $CN = \frac{1}{2}CD = \frac{1}{2}AB$
$\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{CN} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$
Mà $\overrightarrow{AD} = \overrightarrow{BC}$ và $\overrightarrow{DN} = -\overrightarrow{CN} = -\frac{1}{2}\overrightarrow{CD} = -\frac{1}{2}\overrightarrow{AB}$
Do đó, $\overrightarrow{AN} = \overrightarrow{BC} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \frac{3}{2}\overrightarrow{AB}$
Vì ABCD là hình bình hành nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ hay $\overrightarrow{AD} = \overrightarrow{AC} - \overrightarrow{AB}$
Mặt khác, $AM = \frac{1}{3}AB$ và $CN = \frac{1}{2}CD = \frac{1}{2}AB$
$\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{CN} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
