Câu hỏi:
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \).
b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
c) \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).
d) \(\overrightarrow {GS} = 3\overrightarrow {OG} \).
Đáp án đúng:
- a) $\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = (\overrightarrow {AB} + \overrightarrow {BC}) + (\overrightarrow {CD} + \overrightarrow {DA}) = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 \neq \overrightarrow{SO}$. Vậy a) sai.
- b) Vì $ABCD$ là hình bình hành tâm $O$ nên $O$ là trung điểm của $AC$ và $BD$. Do đó, $\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0$ và $\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0$. Suy ra $\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0$. Vậy b) đúng.
- c) Ta có $\overrightarrow {SB} + \overrightarrow {SD} = (\overrightarrow {SA} + \overrightarrow {AB}) + (\overrightarrow {SC} + \overrightarrow {CD}) = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {0} = \overrightarrow {SA} + \overrightarrow {SC}$. Vậy c) đúng.
- d) Ta có $\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + (\overrightarrow {GO} + \overrightarrow {OA}) + (\overrightarrow {GO} + \overrightarrow {OB}) + (\overrightarrow {GO} + \overrightarrow {OC}) + (\overrightarrow {GO} + \overrightarrow {OD}) = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} + (\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD}) = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} = 4\overrightarrow {OG} = 3\overrightarrow {OG} + \overrightarrow {OG} \neq 3\overrightarrow{OG}$.
Suy ra $\overrightarrow{GS}=4\overrightarrow{OG}$. Vậy d) đúng.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài