JavaScript is required

Câu hỏi:

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \). b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \). (ảnh 1)

a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \).

b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).

c) \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).

d) \(\overrightarrow {GS} = 3\overrightarrow {OG} \).

Trả lời:

Đáp án đúng:


Ta có:
  • a) $\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = (\overrightarrow {AB} + \overrightarrow {BC}) + (\overrightarrow {CD} + \overrightarrow {DA}) = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 \neq \overrightarrow{SO}$. Vậy a) sai.
  • b) Vì $ABCD$ là hình bình hành tâm $O$ nên $O$ là trung điểm của $AC$ và $BD$. Do đó, $\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0$ và $\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0$. Suy ra $\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0$. Vậy b) đúng.
  • c) Ta có $\overrightarrow {SB} + \overrightarrow {SD} = (\overrightarrow {SA} + \overrightarrow {AB}) + (\overrightarrow {SC} + \overrightarrow {CD}) = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {0} = \overrightarrow {SA} + \overrightarrow {SC}$. Vậy c) đúng.
  • d) Ta có $\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + (\overrightarrow {GO} + \overrightarrow {OA}) + (\overrightarrow {GO} + \overrightarrow {OB}) + (\overrightarrow {GO} + \overrightarrow {OC}) + (\overrightarrow {GO} + \overrightarrow {OD}) = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} + (\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD}) = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GS} = 4\overrightarrow {OG} = 3\overrightarrow {OG} + \overrightarrow {OG} \neq 3\overrightarrow{OG}$.
    Suy ra $\overrightarrow{GS}=4\overrightarrow{OG}$. Vậy d) đúng.
Vậy đáp án đúng là a) Sai, b) Đúng, c) Sai, d) Đúng.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 3:

Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;\,3} \right]\) như hình dưới đây.

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng? (ảnh 1)

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng?

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP