JavaScript is required

Câu hỏi:

C. TRẢ LỜI NGẮN.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây. Hàm số \(g\left( x \right) = f\left( x \right) + x\) đạt cực tiểu tại điểm \(x\) bằng bao nhiêu? (ảnh 1)

Hàm số \(g\left( x \right) = f\left( x \right) + x\) đạt cực tiểu tại điểm \(x\) bằng bao nhiêu?

Trả lời:

Đáp án đúng:


Ta có $g(x) = f(x) + x$. Suy ra $g'(x) = f'(x) + 1$.
Hàm số $g(x)$ đạt cực tiểu khi $g'(x) = 0$ và đổi dấu từ âm sang dương.
$g'(x) = 0 \Leftrightarrow f'(x) + 1 = 0 \Leftrightarrow f'(x) = -1$.
Dựa vào đồ thị, ta thấy $f'(x) = -1$ tại $x = 1$ và $x = -2$.
Xét tại $x = 1$: Khi $x < 1$ và gần 1, $f'(x) < -1 \Rightarrow f'(x) + 1 < 0$. Khi $x > 1$ và gần 1, $f'(x) > -1 \Rightarrow f'(x) + 1 > 0$. Vậy $g'(x)$ đổi dấu từ âm sang dương tại $x = 1$. Do đó, $g(x)$ đạt cực tiểu tại $x = 1$.
Xét tại $x = -2$: Khi $x < -2$ và gần -2, $f'(x) > -1 \Rightarrow f'(x) + 1 > 0$. Khi $x > -2$ và gần -2, $f'(x) < -1 \Rightarrow f'(x) + 1 < 0$. Vậy $g'(x)$ đổi dấu từ dương sang âm tại $x = -2$. Do đó, $g(x)$ đạt cực đại tại $x = -2$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 3:

Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;\,3} \right]\) như hình dưới đây.

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng? (ảnh 1)

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng?

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 4:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\backslash \left\{ 2 \right\}\) và có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\backslash \left\{ 2 \right\}\) và có đồ thị như hình vẽ. Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình (ảnh 1)

Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP