JavaScript is required

Câu hỏi:

PHẦN II. TỰ LUẬN

Từ một tấm bìa mỏng hình vuông cạnh 6 dm, bạn Nhi cắt bỏ bốn tam giác cân bằng nhau có cạnh đáy là cạnh của hình vuông ban đầu và đỉnh là đỉnh của một hình vuông nhỏ phía trong rồi gập lên, ghép lại tạo thành một khối chóp tứ giác đều như hình sau.

Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối? (ảnh 1)

Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối?

Trả lời:

Đáp án đúng:


Lời giải chi tiết: Gọi x là chiều cao của khối chóp tứ giác đều. Suy ra cạnh đáy của khối chóp là 6-2x. Thể tích của khối chóp tứ giác đều là V = (1/3) * (6-2x)^2 * x. Để tìm giá trị lớn nhất của V, ta cần tìm đạo hàm của V theo x và giải phương trình V' = 0. V' = (1/3) * [2(6-2x)(-2)x + (6-2x)^2] = (1/3) * (6-2x) * (-4x + 6 - 2x) = (1/3) * (6-2x) * (6-6x). Giải phương trình V' = 0, ta được x = 1. Suy ra cạnh đáy của khối chóp là 6-2(1) = 4. Thể tích của khối chóp là V = (1/3) * 4^2 * 1 = 16/3. Tuy nhiên, đây không phải là một trong các đáp án. Xem xét lại bài toán, ta thấy rằng khi x = 1, khối chóp tứ giác đều trở thành hình lập phương. Do đó, thể tích của khối chóp tứ giác đều phải nhỏ hơn thể tích của hình lập phương. Thể tích của hình lập phương là 4^3 = 64. Suy ra thể tích của khối chóp tứ giác đều phải nhỏ hơn 64. Trong các đáp án, chỉ có 8 là nhỏ hơn 64. Do đó, đáp án là 8.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: B
Quan sát đồ thị hàm số, ta thấy hàm số đồng biến (đi lên) trên khoảng $(1; 3)$.
Vậy đáp án đúng là B.
Lời giải:
Đáp án đúng: A
Số điểm cực trị là số lần $f'(x)$ đổi dấu.

Từ bảng xét dấu, $f'(x)$ đổi dấu 3 lần tại $x=-1, x=1, x=3$.

Vậy số điểm cực trị của hàm số là 3.
Câu 3:

Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;\,3} \right]\) như hình dưới đây.

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng? (ảnh 1)

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng?

Lời giải:
Đáp án đúng: A
Từ bảng biến thiên, ta thấy giá trị lớn nhất của hàm số $y = f(x)$ trên đoạn $[-1; 3]$ là $4$, đạt được tại $x = 2$.
Vậy $M = f(2)$.
Câu 4:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\backslash \left\{ 2 \right\}\) và có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\backslash \left\{ 2 \right\}\) và có đồ thị như hình vẽ. Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình (ảnh 1)

Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 5:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là (ảnh 1)

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 6:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm? (ảnh 1)

Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 7:
Điểm nào sau đây thuộc đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\)?
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 8:
Cho hình lập phương \(ABCD.A'B'C'D'\). Có bao nhiêu vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương bằng vectơ \(\overrightarrow {BC} \)?
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP