Câu hỏi:
Một chất điểm đang dao động điều hòa trên trục Ox với chu kì bằng 0,25 s và biên độ bằng 4 cm quanh vị trí cân bằng là gốc tọa độ O. Tại thời điểm ban đầu, t = 0, chất điểm có li độ âm và đang chuyển động với vận tốc \(16\pi \) cm/s. Phương trình dao động của chất điểm là
B. \(x = 4\cos \left( {4\pi t - \frac{\pi }{3}} \right)\,cm.\)
C. \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\)
D. \(x = 4\cos \left( {8\pi t + \frac{{5\pi }}{6}} \right)\,cm.\)
Trả lời:
Đáp án đúng: C
Ta có: $T = 0,25s \Rightarrow \omega = \frac{2\pi}{T} = \frac{2\pi}{0,25} = 8\pi (rad/s)$
Phương trình dao động có dạng: $x = A\cos(\omega t + \varphi)$
Với $A = 4cm$, $\omega = 8\pi$ rad/s.
Tại $t = 0$: $x = 4\cos(\varphi) < 0$ và $v = -A\omega\sin(\varphi) > 0$ suy ra $\cos(\varphi) < 0$ và $\sin(\varphi) < 0$ nên $\varphi$ nằm trong góc phần tư thứ III.
$v = -A\omega\sin(\varphi) = 16\pi \Rightarrow \sin(\varphi) = \frac{16\pi}{-4.8\pi} = -\frac{1}{2} \Rightarrow \varphi = -\frac{\pi}{6} + k2\pi$ hoặc $\varphi = \frac{7\pi}{6} + k2\pi$
Vì $\varphi$ nằm trong góc phần tư thứ III, nên $\varphi = \frac{7\pi}{6}$.
Vậy $x = 4\cos(8\pi t + \frac{7\pi}{6}) = 4\cos(8\pi t - \frac{5\pi}{6})$.
Phương trình dao động có dạng: $x = A\cos(\omega t + \varphi)$
Với $A = 4cm$, $\omega = 8\pi$ rad/s.
Tại $t = 0$: $x = 4\cos(\varphi) < 0$ và $v = -A\omega\sin(\varphi) > 0$ suy ra $\cos(\varphi) < 0$ và $\sin(\varphi) < 0$ nên $\varphi$ nằm trong góc phần tư thứ III.
$v = -A\omega\sin(\varphi) = 16\pi \Rightarrow \sin(\varphi) = \frac{16\pi}{-4.8\pi} = -\frac{1}{2} \Rightarrow \varphi = -\frac{\pi}{6} + k2\pi$ hoặc $\varphi = \frac{7\pi}{6} + k2\pi$
Vì $\varphi$ nằm trong góc phần tư thứ III, nên $\varphi = \frac{7\pi}{6}$.
Vậy $x = 4\cos(8\pi t + \frac{7\pi}{6}) = 4\cos(8\pi t - \frac{5\pi}{6})$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Lời giải:
Đáp án đúng: a
Đổi đơn vị: l = 20 cm = 0.2 m; g = 10 m/s^2; v = 20 cm/s = 0.2 m/s; a = $2\sqrt{3}$ m/s^2
- Tính $\omega = \sqrt{\frac{g}{l}} = \sqrt{\frac{10}{0.2}} = \sqrt{50} = 5\sqrt{2}$ rad/s
- Ta có: $A^2 = x^2 + \frac{v^2}{\omega^2}$ và $a = -\omega^2 x \Rightarrow x = -\frac{a}{\omega^2} = -\frac{2\sqrt{3}}{(5\sqrt{2})^2} = -\frac{2\sqrt{3}}{50}$ m
- $A^2 = (\frac{-2\sqrt{3}}{50})^2 + \frac{(0.2)^2}{(5\sqrt{2})^2} = \frac{12}{2500} + \frac{0.04}{50} = \frac{12}{2500} + \frac{2}{2500} = \frac{14}{2500}$
- $A = \sqrt{\frac{14}{2500}} = \frac{\sqrt{14}}{50}$ m
- Tốc độ cực đại: $v_{max} = A\omega = \frac{\sqrt{14}}{50} * 5\sqrt{2} = \frac{\sqrt{28}}{10} = \frac{2\sqrt{7}}{10} = \frac{\sqrt{7}}{5} \approx 0.529$ m/s