JavaScript is required

Câu hỏi:

Cho hai lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} \) cùng tác động vào một vật tại điểm \(M\). Cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) lần lượt là 400 N và 300 N, AMB^=90°. Tính cường độ của lực tác động lên vật.
Media VietJack

Trả lời:

Trả lời:

Đáp án đúng:


Ta có tổng lực tác dụng lên vật: \({\vec F_1} + {\vec F_2} = \overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC} \) (với \(C\) là điểm sao cho \(AMBC\) là hình bình hành).

Khi đó cường độ lực tác dụng lên vật: \(\left| {{{\vec F}_1} + {{\vec F}_2}} \right| = \left| {\overrightarrow {MC} } \right| = MC\).

Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \left| {{{\vec F}_1}} \right| = 400\,{\rm{N}}\),

 \(MB = \left| {\overrightarrow {MB} } \right| = \left| {{{\vec F}_2}} \right| = 300\,{\rm{N}}\)

Mặt khác, do \(\widehat {AMB} = 90{^ \circ }\) nên AMBC là hình chữ nhật.

Khi đó \(MC = \sqrt {M{A^2} + M{B^2}}  = \sqrt {{{400}^2} + {{300}^2}}  = 500\,\,\left( {\rm{N}} \right)\).

Vậy cường độ của lực tác động lên vật bằng 500 N.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan