Cho dãy số \(\left( {{u}_{n}} \right)\), biết \({{u}_{n}}=\frac{n}{{{2}^{n}}-1}\). Ba số hạng đầu tiên của dãy số là
Bộ đề kiểm tra học kì I môn Toán (năm học 2023 - 2024) của Cụm Trường Hà Nội bao gồm: 1. Trường THPT Ngọc Tảo – H. Phúc Thọ – Hà Nội 2. Trường TH, THCS THPT Thực Nghiệm – Q. Ba Đình – Hà Nội 3. Trường THPT Quảng Oai – H. Ba Vì – Hà Nội
Câu hỏi liên quan
Số hạng thứ ba của dãy số \(\left\{ \begin{align} & {{u}_{1}}=2\,022 \\ & {{u}_{n+1}}={{u}_{n}}-n \\ \end{align} \right.\) bằng
Trong các dãy số có số hạng tổng quát dưới đây, dãy số nào là dãy số bị chặn?
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{1}}=1,{{u}_{n+1}}=\frac{1}{3}\left( 2{{u}_{n}}+\frac{n-1}{{{n}^{2}}+3n+2} \right);n\in {{\mathbb{N}}^{\text{*}}}\).
Khi đó \({{u}_{2023}}\) bằng? (Làm tròn kết quả đến chữ số thập phân thứ tư).
Cho dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{2n}{3n+2},n\in {{\mathbb{N}}^{\text{*}}}\). Khẳng định nào sau đây đúng?
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
+ Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
+ Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{2}}}\)).
Cứ tiếp tục quá trình như vậy (ở bước thứ \(n\), bỏ đi \({{3}^{n-1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{n}}}\)).
Tổng diện tích các tam giác đã bỏ đi bằng bao nhiêu?
Trong các dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát \({{u}_{n}}\) sau đây, đâu là dãy số giảm?
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Nhà toán học người Pháp Pierre de Fermat là người đầu tiên đưa ra khái niệm số Fermat \(F_n = 2^{2^n} +1\) với \(n\) là một số nguyên dương không âm, Fermat dự đoán \(F_n\) là một số nguyên tố nhưng Euler đã chứng minh được \(F_5\) là hợp số. Hãy tìm số chữ số của \(F_{13}\).
Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn Thần đèn cho chàng ba điều ước Aladin ước \(2\) điều đầu tiên tùy thích, nhưng điều ước thứ \(3\) của chàng là: "Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay". Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau.
Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số giảm?
Cho dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát: \({{u}_{n}}=\frac{2n}{n+1}\). Ba số hạng đầu của dãy số đã cho lần lượt là
Cho dãy số \(\left( {{u}_{n}} \right)\), biết \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=-1 \\ {{u}_{n+1}}={{u}_{n}}+3 \\ \end{array} \right.\) với \(n\ge 0\). Ba số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?
Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số bị chặn?
Dãy số nào sau đây là dãy số tăng?
Bạn Lan có một cái lọ. Ngày thứ nhất bạn bỏ vào lọ 1 viên kẹo, ngày thứ hai bạn bỏ vào 2 viên kẹo, ngày thứ ba bạn bỏ vào 4 viên kẹo. Số viên kẹo bỏ vào lọ trong ngày hôm sau sẽ gấp đôi số viên kẹo bỏ vào lọ trong ngày hôm trước. Biết rằng sau khi bỏ hết số kẹo ở ngày thứ 12 thì lọ đầy. Hỏi ước tính ở ngày thứ mấy, số kẹo trong lọ chiếm \(\frac{1}{4}\) lọ?
Tính tổng \(M=2+4+6+...+(2n+4)\)
Anh Bình là nhân viên của một công ty Từ ngày 1/2/2024 anh Bình được nâng lương lên bậc 4, mức lương anh hiện hưởng là \(11\) \(718\) \(750\) đồng mỗi tháng. Theo quy định của công ty, nếu không bị kỉ luật, không có khen thưởng đặc biệt thì cứ sau \(3\) năm anh Bình sẽ được nâng một bậc lương, tăng thêm \(25\%\) so với bậc lương trước, tối đa là bậc 7. Khi hết bậc 7 sẽ chuyển sang vượt khung. Lương vượt khung năm sau cao hơn năm trước \(1\%\) và vẫn nhận hàng tháng. Lương bậc 1 sẽ được tính sau khi hết đúng \(1\) năm tập sự. Anh Bình là người rất nghiêm túc, không vi phạm kỉ luật. Anh dự định sẽ làm việc \(30\) năm ở công ty này rồi nghỉ hưu.
Một người gửi tiết kiệm \(700\) triệu đồng vào một ngân hàng với lãi suất \(0,5%\)/tháng theo hình thức lãi kép. Kể từ lúc gửi cứ sau \(1\) tháng anh ta lại rút ra \(10\) triệu để chi tiêu (tháng cuối cùng nếu tài khoản không đủ \(10\) triệu thì rút hết). Hỏi sau thời gian bao nhiêu tháng kể từ ngày gửi tiền, tài khoản tiền gửi của người đó về \(0\) đồng? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi tiết kiệm).
Mùa hè năm 2024, để chuẩn bị cho "học kì quân đội" dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong \(45\) ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ \(11\), do số lượng thành viên tham gia tăng lên, nên lượng thực phẩm tiêu thụ tăng lên \(10\%\) mỗi ngày (ngày sau tăng \(10\%\) so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày?
Tổng \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{{{2}^{n}}}+\ldots \) bằng