JavaScript is required

Câu hỏi:

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

A.
15.
B.
4096.
C.
360.
D.
720.
Trả lời:

Đáp án đúng: D


Số các số tự nhiên gồm 4 chữ số khác nhau được tạo từ 6 chữ số đã cho là một chỉnh hợp chập 4 của 6.
Số các số là $A_6^4 = \frac{6!}{(6-4)!} = \frac{6!}{2!} = 6 \times 5 \times 4 \times 3 = 360$.
Vậy đáp án là C.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan