Câu hỏi:
Chướng ngại vật “tường cong” trong một sân thi đấu X là một khối bê tông có chiều cao từ mặt đất lên là m. Giao của tường cong và mặt đất là đoạn
m. Thiết diện của khối tường cong cắt bởi mặt phẳng vuông góc với
tại
là một hình tam giác vuông cong
với
,
m và cạnh cong
nằm trên một đường parabol có trục đối xứng vuông góc với mặt đất. Tại vị trí
là trung điểm của
thì tường cong có độ cao
m. Tính thể tích bê tông (đơn vị mét khối) cần sử dụng để tạo nên khối tường cong đó (kết quả làm tròn đến hàng phần mười).
Đáp án đúng:
Khi đó:
- $y = a x^2 + b x + c$ đi qua $A(-1.5; 0)$ nên $0 = a(-1.5)^2 + b(-1.5) + c$
- $y = a x^2 + b x + c$ đi qua $B(1.5; 0)$ nên $0 = a(1.5)^2 + b(1.5) + c$
- $y = a x^2 + b x + c$ đi qua $I(0; \frac{3}{4})$ nên $\frac{3}{4} = a(0)^2 + b(0) + c$
Thể tích của khối bê tông là: $V = \int_{-1.5}^{1.5} \sqrt{3} \cdot (-\frac{1}{3}x^2 + \frac{3}{4}) dx = 2 \sqrt{3} \int_{0}^{1.5} (-\frac{1}{3}x^2 + \frac{3}{4}) dx = 2\sqrt{3} \cdot [-\frac{1}{9}x^3 + \frac{3}{4}x]_0^{1.5} = 2\sqrt{3} \cdot (-\frac{1}{9}(1.5)^3 + \frac{3}{4}(1.5)) = 2\sqrt{3} \cdot 0.8(3) \approx 3.4 m^3$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Vậy, $u_n = 5.2^{n-1}$.