JavaScript is required

Câu hỏi:

Cho \(\tan \alpha - \cot \alpha = 3.\) Tính giá trị của biểu thức sau: \(A = {\tan ^2}\alpha + {\cot ^2}\alpha \).

A.
A. \(A = 12\).    
B.
B. \(A = 11\).  
C.
C. \(A = 13\).   
D.
D. \(A = 5\).
Trả lời:

Đáp án đúng: C


Ta có: $A = {\tan ^2}\alpha + {\cot ^2}\alpha = {\tan ^2}\alpha + {\cot ^2}\alpha - 2 \tan \alpha \cot \alpha + 2 \tan \alpha \cot \alpha = {(\tan \alpha - \cot \alpha)^2} + 2 \tan \alpha \cot \alpha$.
Vì $\tan \alpha \cot \alpha = 1$ nên $A = {(\tan \alpha - \cot \alpha)^2} + 2 = {3^2} + 2 = 9 + 2 = 11$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan