JavaScript is required

Câu hỏi:

Cho tam giác ABC có AB = 4, AC = 8 và μ=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

A.
A. 7;
B.
B. 6;
C.
C. 5;
D.
D. 4.
Trả lời:

Đáp án đúng:


Ta có công thức tính diện tích tam giác: $S = \frac{1}{2}ab\sin{C}$.
Trong trường hợp này, ta có:
$S = \frac{1}{2}AB.AC.\sin{A} = \frac{1}{2}.4.8.\sin{30^\circ} = \frac{1}{2}.4.8.\frac{1}{2} = 8$.
Mặt khác, theo định lý sin, ta có $\frac{BC}{\sin{A}} = 2R$, suy ra $R = \frac{BC}{2\sin{A}}$.
Áp dụng định lý cosin cho tam giác ABC, ta có:
$BC^2 = AB^2 + AC^2 - 2.AB.AC.\cos{A} = 4^2 + 8^2 - 2.4.8.\cos{30^\circ} = 16 + 64 - 64.\frac{\sqrt{3}}{2} = 80 - 32\sqrt{3} \approx 24.56$.
Suy ra $BC = \sqrt{80-32\sqrt{3}} \approx 4.956$.
Vậy $R = \frac{BC}{2\sin{A}} = \frac{\sqrt{80-32\sqrt{3}}}{2.\sin{30^\circ}} = \frac{\sqrt{80-32\sqrt{3}}}{2.\frac{1}{2}} = \sqrt{80-32\sqrt{3}} \approx 4.956 \approx 5$.
Vậy đáp án là C.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan