Câu hỏi:
Cho hệ \[\left\{ \begin{array}{l}x + y \le 1\\4x\,\, - \,y\, \le 2\\x \ge 0\end{array} \right.\]. Giá trị lớn nhất của biểu thức P = x – y trên miền nghiệm của hệ đã cho là:
Trả lời:
Đáp án đúng: A
Để tìm giá trị lớn nhất của $P = x - y$ trên miền nghiệm của hệ, ta thực hiện các bước sau:
1. Vẽ miền nghiệm của hệ bất phương trình: $x + y \le 1$, $4x - y \le 2$, $x \ge 0$.
2. Xác định các đỉnh của miền nghiệm. Các đỉnh này là giao điểm của các đường thẳng biên.
3. Tính giá trị của $P = x - y$ tại mỗi đỉnh.
4. Giá trị lớn nhất trong các giá trị tính được là giá trị lớn nhất của $P$.
Giải hệ phương trình:
$x + y = 1$ và $4x - y = 2$ => $5x = 3$ => $x = \frac{3}{5}$, $y = 1 - \frac{3}{5} = \frac{2}{5}$. Điểm $(\frac{3}{5}, \frac{2}{5})$
$x + y = 1$ và $x = 0$ => $x = 0, y = 1$. Điểm $(0, 1)$
$4x - y = 2$ và $x = 0$ => $x = 0, y = -2$. Điểm $(0, -2)$
Miền nghiệm là đa giác có các đỉnh $(0,0);(1/2,0);(3/5, 2/5); (0,1)$.
* $P(0,0)= 0 - 0 = 0$
* $P(1/2,0)= 1/2 - 0 = 1/2$
* $P(3/5, 2/5) = 3/5 - 2/5 = 1/5$
* $P(0,1) = 0 -1 = -1$
Giá trị lớn nhất của P là $\frac{1}{2}$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
