Câu hỏi:
Cho hàm số y = x2 – 2x – 2 có đồ thị là parabol (P) và đường thẳng (d) có phương trình y = x + m. Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 đạt giá trị nhỏ nhất là:
Trả lời:
Đáp án đúng: A
Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:
$x^2 - 2x - 2 = x + m \Leftrightarrow x^2 - 3x - 2 - m = 0$ (*)
Để $(d)$ cắt $(P)$ tại hai điểm phân biệt $A, B$ thì phương trình (*) phải có hai nghiệm phân biệt, tức là:
$\Delta = (-3)^2 - 4(1)(-2 - m) > 0 \Leftrightarrow 9 + 8 + 4m > 0 \Leftrightarrow 4m > -17 \Leftrightarrow m > -\frac{17}{4}$
Gọi $x_1, x_2$ là hai nghiệm của phương trình (*), theo định lý Viète ta có:
$\begin{cases} x_1 + x_2 = 3 \\ x_1x_2 = -2 - m \end{cases}$
$y_1 = x_1 + m$, $y_2 = x_2 + m$
$OA^2 + OB^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 = x_1^2 + (x_1 + m)^2 + x_2^2 + (x_2 + m)^2$
$= x_1^2 + x_1^2 + 2mx_1 + m^2 + x_2^2 + x_2^2 + 2mx_2 + m^2$
$= 2(x_1^2 + x_2^2) + 2m(x_1 + x_2) + 2m^2$
$= 2[(x_1 + x_2)^2 - 2x_1x_2] + 2m(3) + 2m^2$
$= 2[3^2 - 2(-2 - m)] + 6m + 2m^2$
$= 2[9 + 4 + 2m] + 6m + 2m^2 = 2(13 + 2m) + 6m + 2m^2$
$= 26 + 4m + 6m + 2m^2 = 2m^2 + 10m + 26 = 2(m^2 + 5m) + 26$
$= 2\left(m^2 + 5m + \frac{25}{4}\right) + 26 - \frac{25}{2} = 2\left(m + \frac{5}{2}\right)^2 + \frac{27}{2}$
Để $OA^2 + OB^2$ đạt giá trị nhỏ nhất thì $2\left(m + \frac{5}{2}\right)^2$ phải nhỏ nhất, tức là $m + \frac{5}{2} = 0 \Leftrightarrow m = -\frac{5}{2}$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
