JavaScript is required

Câu hỏi:

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right)\]; b) \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x}.\]

Trả lời:

Đáp án đúng:


a) $\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right) = \mathop {\lim }\limits_{n \to + \infty } {n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = -\infty $ vì $\mathop {\lim }\limits_{n \to + \infty } {n^2} = +\infty $ và $\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = -1$.
b) $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^2} + 4} - 2} \right)\left( {\sqrt {{x^2} + 4} + 2} \right)}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4 - 4}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {{x^2} + 4} + 2}} = \frac{0}{{\sqrt 4 + 2}} = 0$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan