Câu hỏi:
Khẳng định nào sau đây đúng về hàm số ?
Trả lời:
Đáp án đúng: B
Ta có $y = \sqrt{x^2+1}$.
$y' = \frac{2x}{2\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$.
$y' = 0 \Leftrightarrow x = 0$.
$y'' = \frac{\sqrt{x^2+1} - x.\frac{x}{\sqrt{x^2+1}}}{x^2+1} = \frac{x^2+1-x^2}{(x^2+1)\sqrt{x^2+1}} = \frac{1}{(x^2+1)\sqrt{x^2+1}}$.
$y''(0) = 1 > 0$ nên hàm số đạt cực tiểu tại $x=0$. Vậy đáp án đúng là hàm số đạt cực tiểu tại $x=0$.
$y' = \frac{2x}{2\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$.
$y' = 0 \Leftrightarrow x = 0$.
$y'' = \frac{\sqrt{x^2+1} - x.\frac{x}{\sqrt{x^2+1}}}{x^2+1} = \frac{x^2+1-x^2}{(x^2+1)\sqrt{x^2+1}} = \frac{1}{(x^2+1)\sqrt{x^2+1}}$.
$y''(0) = 1 > 0$ nên hàm số đạt cực tiểu tại $x=0$. Vậy đáp án đúng là hàm số đạt cực tiểu tại $x=0$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
