Câu hỏi này yêu cầu lập bảng biến thiên và vẽ đồ thị hàm số bậc hai $y = x^2 - 5x$. Để giải quyết, ta cần tìm đỉnh của parabol, trục đối xứng, và hướng bề lõm.
Đỉnh của parabol: $x_v = \frac{-b}{2a} = \frac{-(-5)}{2(1)} = \frac{5}{2}$. Khi $x = \frac{5}{2}$, $y = (\frac{5}{2})^2 - 5(\frac{5}{2}) = \frac{25}{4} - \frac{25}{2} = -\frac{25}{4}$. Vậy đỉnh là $(\frac{5}{2}, -\frac{25}{4})$.
Trục đối xứng: $x = \frac{5}{2}$.
Vì $a = 1 > 0$, parabol có bề lõm hướng lên.
Từ đó, ta có thể lập bảng biến thiên và vẽ đồ thị hàm số.
Ta cần $x = \frac{m^2-5m+2}{-2m-1}$ là nghiệm duy nhất. Điều này xảy ra khi $x = -1$ là nghiệm kép hoặc nghiệm duy nhất. Nếu $m = -1$, thì $-2m-1 = 2 - 1 = 1 \ne 0$. Khi đó $x = \frac{1 + 5 + 2}{1} = 8$. Kiểm tra lại vào phương trình ban đầu thì thấy không thỏa mãn.
Gọi $x$ (cm) là chiều cao của rãnh nước. Theo đề bài, chiều rộng đáy rãnh là $42 - 2x$ (cm). Diện tích mặt cắt ngang của rãnh nước là: $S = x(42 - 2x) = 42x - 2x^2$. Để đảm bảo kỹ thuật, ta cần $S \ge 160$ hay $42x - 2x^2 \ge 160$. $\Leftrightarrow 2x^2 - 42x + 160 \le 0 \Leftrightarrow x^2 - 21x + 80 \le 0$. $\Delta = (-21)^2 - 4 * 1 * 80 = 441 - 320 = 121 > 0$, suy ra phương trình có hai nghiệm phân biệt: $x_1 = \dfrac{21 - \sqrt{121}}{2} = \dfrac{21 - 11}{2} = 5$ và $x_2 = \dfrac{21 + \sqrt{121}}{2} = \dfrac{21 + 11}{2} = 16$. Bảng xét dấu: \[\begin{array}{c|ccccccc}x & -\infty & & 5 & & 16 & & +\infty \\\hline f(x) & & + & 0 & - & 0 & + & \\\end{array}\] Vậy $5 \le x \le 16$. Để rãnh nước có độ cao ít nhất, ta chọn $x = 5$. Do đó bác Nam cần làm rãnh nước có độ cao ít nhất là $5$ cm.
Parabol $y = ax^2 + bx + c$ có trục đối xứng là đường thẳng $x = -\frac{b}{2a}$. Trong trường hợp này, $a = 1$ và $b = 3$, vậy trục đối xứng là $x = -\frac{3}{2(1)} = -\frac{3}{2}$.