Đáp án đúng: A
Ta có:
* $AM = 2BM \Rightarrow \overrightarrow{AM} = 2\overrightarrow{BM} \Rightarrow \overrightarrow{AM} = 2(\overrightarrow{BA} + \overrightarrow{AM}) \Rightarrow \overrightarrow{AM} = 2\overrightarrow{BA} + 2\overrightarrow{AM} \Rightarrow -\overrightarrow{AM} = 2\overrightarrow{BA} \Rightarrow \overrightarrow{MA} = 2\overrightarrow{BA} \Rightarrow \overrightarrow{MA} = -2\overrightarrow{AB} \Rightarrow \overrightarrow{AM} = \frac{2}{3} \overrightarrow{AB}$
* $G$ là trọng tâm tam giác $BCD$ $\Rightarrow \overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$
* $\overrightarrow{MG} = \overrightarrow{AG} - \overrightarrow{AM} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}) - \frac{2}{3} \overrightarrow{AB} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD}$
Vậy đáp án đúng là $\overrightarrow{MG} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD}$.