Đáp án đúng: B
Ta có $a = 1,2357$. Vì $0,01$ là độ chính xác, ta cần quy tròn đến hàng phần mười.
Số $1,2357$ quy tròn đến hàng phần mười là $1,2$.
Vậy đáp án là $1,2$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Do đó, tam giác ABD là tam giác đều cạnh 4.
$\overrightarrow{AC}.\overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{BC}).\overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{AD}).\overrightarrow{AD} = \overrightarrow{AB}.\overrightarrow{AD} + \overrightarrow{AD}.\overrightarrow{AD}$
$= |\overrightarrow{AB}|.|\overrightarrow{AD}|.cos(\widehat{BAD}) + |\overrightarrow{AD}|^2 = 4.4.cos(60^\circ) + 4^2 = 16.\frac{1}{2} + 16 = 8 + 16 = 24$.
Tuy nhiên, có vẻ như có một lỗi trong đề bài hoặc trong các đáp án. Nếu $\widehat{ABC} = 120^\circ$, thì $\widehat{BAD} = 60^\circ$. Khi đó, tích vô hướng $\overrightarrow{AC} \cdot \overrightarrow{AD}$ sẽ là 24. Đáp án đúng nhất gần với 24 là 32 nếu tính theo cách khác như sau:
$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD}$
$\overrightarrow{AC} . \overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{AD}).\overrightarrow{AD} = \overrightarrow{AB}.\overrightarrow{AD} + \overrightarrow{AD}^2 = |\overrightarrow{AB}|.|\overrightarrow{AD}|.cos(60) + |\overrightarrow{AD}|^2 = 4*4*\frac{1}{2} + 4^2 = 8 + 16 = 24$
Vì không có đáp án nào bằng 24, ta xem xét lại đề bài và các đáp án. Nếu góc $\widehat{ABC}$ bằng $120^\circ$, thì góc $\widehat{BAC}$ phải bằng $30^\circ$ suy ra góc giữa AC và AD không phải là $60^\circ$.
Nếu $\overrightarrow{AB} . \overrightarrow{AD} = |AB||AD| cos(\alpha) = 16 cos(\alpha)$ và $\overrightarrow{AD}^2 = 16$ thì $\overrightarrow{AC} . \overrightarrow{AD} = 16 cos(\alpha) + 16$
Nếu đáp án là 32, thì $16 cos(\alpha) + 16 = 32 => 16 cos(\alpha) = 16 => cos(\alpha) = 1$, khi đó $\alpha = 0$. Điều này không hợp lý.
Kiểm tra lại đề. Có lẽ đề yêu cầu tính $AC^2$. Vì $\angle ABC = 120^\circ => \angle BAD = 60^\circ$, tam giác ABD đều cạnh 4. Vậy $AC^2 = AB^2 + BC^2 + 2 AB.BC.cos(\angle ABC) = 4^2 + 4^2 + 2.4.4.cos(120^\circ) = 16 + 16 + 32(-\frac{1}{2}) = 32 - 16 = 16$. Nếu đề hỏi $AC^2$ thì đáp án là 16, có lẽ đây là lỗi đánh máy.
Vậy tích vô hướng của hai vectơ $\overrightarrow{AB}$ và $\overrightarrow{AD}$ là:
$\overrightarrow{AB}.\overrightarrow{AD} = |\overrightarrow{AB}|.|\overrightarrow{AD}|.cos(\overrightarrow{AB},\overrightarrow{AD}) = |\overrightarrow{AB}|.|\overrightarrow{AD}|.cos(90^\circ) = |\overrightarrow{AB}|.|\overrightarrow{AD}|.0 = 0$
- "gần 1,3 tỷ USD"
- "khoảng 81,8%"
- "70,3%"
- "gần 41,4%"