JavaScript is required

Câu hỏi:

Cho bốn điểm phân biệt \[A,B,C,D\]. Vectơ tổng \[\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} \] bằng

A. \(\overrightarrow 0 \).
B. \(\overrightarrow {AC} \).
C. \(\overrightarrow {BD} \).
D. \(\overrightarrow {BA} \).
Trả lời:

Đáp án đúng: A


Ta có:
$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} + \overrightarrow{DA} = (\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{CD} + \overrightarrow{DA}) = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: D
Đường thẳng là $x + y = 1$.
Vì miền nghiệm nằm phía dưới đường thẳng và kể cả bờ, ta có $x + y \le 1$.
Câu 12:

Cho biết \(\cos \alpha = - \frac{2}{3}\). Tính giá trị của biểu thức \(E = \frac{{\cot \alpha + 3\tan \alpha }}{{2\cot \alpha + \tan \alpha }}\)

Lời giải:
Đáp án đúng: D
Ta có $\cos \alpha = - \frac{2}{3}$.

Vì $\cos^2 \alpha + \sin^2 \alpha = 1$ nên $\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9}$.

Suy ra $\sin \alpha = \pm \frac{\sqrt{5}}{3}$.

Khi đó $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\pm \frac{\sqrt{5}}{3}}{-\frac{2}{3}} = \mp \frac{\sqrt{5}}{2}$ và $\cot \alpha = \frac{1}{\tan \alpha} = \mp \frac{2}{\sqrt{5}}$.

$E = \frac{{\cot \alpha + 3\tan \alpha }}{{2\cot \alpha + \tan \alpha }} = \frac{{\mp \frac{2}{\sqrt{5}} + 3\left( {\mp \frac{{\sqrt{5}}}{2}} \right)}}{{2\left( {\mp \frac{2}{\sqrt{5}}} \right) + \left( {\mp \frac{{\sqrt{5}}}{2}} \right)}} = \frac{{\mp \frac{2}{{\sqrt{5}}}} \mp \frac{{3\sqrt{5}}}{2}}}{{\mp \frac{4}{{\sqrt{5}}}} \mp \frac{{\sqrt{5}}}{2}}} = \frac{{ - \frac{2}{{\sqrt{5}}} - \frac{{3\sqrt{5}}}{2}}}{{ - \frac{4}{{\sqrt{5}}} - \frac{{\sqrt{5}}}{2}}} = \frac{{\frac{{ - 4 - 15}}{{2\sqrt{5}}}}}{{\frac{{ - 8 - 5}}{{2\sqrt{5}}}}} = \frac{{ - 19}}{{ - 13}} = \frac{{19}}{{13}}$

Hoặc $E = \frac{{\frac{2}{{\sqrt{5}}} + \frac{{3\sqrt{5}}}{2}}}{{\frac{4}{{\sqrt{5}}} + \frac{{\sqrt{5}}}{2}}} = \frac{{\frac{{4 + 15}}{{2\sqrt{5}}}}}{{\frac{{8 + 5}}{{2\sqrt{5}}}}} = \frac{{19}}{{13}}$

Tuy nhiên, chỉ có đáp án $ - \frac{{25}}{{13}}$ gần nhất với một trường hợp nếu ta chọn dấu sai ở một chỗ. Do đó, có lẽ đề bài đã thiếu điều kiện của $\alpha$ để xác định dấu của $\sin \alpha$ và $\tan \alpha$. Nếu ta giải theo hướng khác:
Chia cả tử và mẫu cho $\tan \alpha$, ta có:
$E = \frac{{\frac{{\cot \alpha }}{{\tan \alpha }} + 3}}{{\frac{{2\cot \alpha }}{{\tan \alpha }} + 1}} = \frac{{\cot ^2 \alpha + 3}}{{2\cot ^2 \alpha + 1}}$
Ta có $\cot ^2 \alpha = \frac{{\cos ^2 \alpha }}{{\sin ^2 \alpha }} = \frac{{\cos ^2 \alpha }}{{1 - \cos ^2 \alpha }} = \frac{{\left( { - \frac{2}{3}} \right)^2 }}{{1 - \left( { - \frac{2}{3}} \right)^2 }} = \frac{{\frac{4}{9}}}{{\frac{5}{9}}} = \frac{4}{5}$.
Khi đó $E = \frac{{\frac{4}{5} + 3}}{{2.\frac{4}{5} + 1}} = \frac{{\frac{{4 + 15}}{5}}}{{\frac{{8 + 5}}{5}}} = \frac{{19}}{{13}}$. Vậy đáp án đúng là $\frac{{19}}{{13}}$
Câu 13:

Cho hai tập \(A = \left\{ {x \in \mathbb{R}|x + 2 \ge 0} \right\}\) và \(B = \left\{ {x \in \mathbb{R}|2x - 1 < 0} \right\}\).

a) \(A = \left[ { - 2; + \infty } \right)\), \(B = \left( { - \infty ;\frac{1}{2}} \right)\).

b) Biểu diễn trên trục số tập hợp \(A\) là

Cho hai tập A = {x thuộc R| x+ 2 lớn hơn bằng 0} và B = {x thuộc R| 2x -1 < 0}. (ảnh 1)

c) \(A \cap B = \left( { - \infty ; + \infty } \right)\).

d) Số phần tử nguyên của tập hợp \(A \cap B\) là 5

Lời giải:
Đáp án đúng:
Ta có:

  • $A = \left\{ {x \in \mathbb{R}|x + 2 \ge 0} \right\} \Leftrightarrow x \ge -2 \Leftrightarrow A = [-2; +\infty)$

  • $B = \left\{ {x \in \mathbb{R}|2x - 1 < 0} \right\} \Leftrightarrow 2x < 1 \Leftrightarrow x < \frac{1}{2} \Leftrightarrow B = (-\infty; \frac{1}{2})$


Vậy đáp án a) đúng.
Câu 14:

Cho tam giác \(ABC\) có \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(AC\). Lấy điểm \(P\) đối xứng với điểm \(M\) qua \(N\).

a) \(MN = BC\).

b) \(\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {BC} } \right|\).

c) \(\overrightarrow {MN} \) và \(\overrightarrow {BC} \) ngược hướng.

d) \(\overrightarrow {MP} = \overrightarrow {BC} \)

Lời giải:
Đáp án đúng:
Vì $M$ và $N$ lần lượt là trung điểm của $AB$ và $AC$, suy ra $MN$ là đường trung bình của tam giác $ABC$.
Do đó, $MN // BC$ và $MN = \frac{1}{2}BC$.
Vì $P$ đối xứng với $M$ qua $N$, nên $N$ là trung điểm của $MP$, suy ra $\overrightarrow{MN} = \overrightarrow{NP}$ và $MP = 2MN$.
Ta có $MP = 2MN = BC$, suy ra $\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {BC} } \right|$.
Vì $MN // BC$ nên $\overrightarrow{MN}$ và $\overrightarrow{BC}$ cùng hướng.
Xét $\overrightarrow{MP}$. Vì $MN // BC$, nên $MP // BC$.
Ta có $\overrightarrow{MP} = 2\overrightarrow{MN}$ và $\overrightarrow{BC} = 2\overrightarrow{MN}$, suy ra $\overrightarrow{MP} = \overrightarrow{BC}$.
Câu 15:
Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng, ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên, \(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \[x\] và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà cửa hàng bán được trong một tháng. Điều kiện của \[x\] và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương trình \(ax + by > 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\)
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 16:
Cho \(\sin x + \cos x = 0,2\). Tính giá trị của biểu thức \(P = \left| {\sin x - \cos x} \right|\)
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 17:
Tỉnh \(A\) và \(B\) bị ngăn cách nhau bởi một ngọn núi. Để đi từ tỉnh \(A\) đến tỉnh \(B\), người ta đi theo lộ trình từ tỉnh \(A\) qua tỉnh \(C\), rồi đến tỉnh \(B\). Biết rằng lộ trình từ \(A\) đến \(C\) dài 70 km, từ \(C\) đến \(B\) dài 100 km, và hai con đường tạo với nhau góc \(60^\circ \). Cứ mỗi 20 km quãng đường thì phương tiện tiêu hao 1 lít nhiên liệu. Để tiết kiệm nhiên liệu, người ta làm một đường hầm xuyên núi để đi từ tỉnh \(A\) đến tỉnh \(B\). Hỏi nếu đi theo đường hầm thì phương tiện tiết kiệm được bao nhiêu lít nhiên liệu (làm tròn kết quả đến hàng phần trăm)?
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 18:
Cho tam giác \[ABC\] vuông cân tại \(A\), có cạnh \(AB\) bằng \[\sqrt 2 \]. Tính độ dài vectơ tổng \[\overrightarrow {AB} + \overrightarrow {AC} \]
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 19:
Một cửa hàng dự định làm kệ sách và bàn làm việc để bán. Mỗi kệ sách cần 5 giờ chế biến gỗ và 4 giờ hoàn thiện. Mỗi bàn làm việc cần 10 giờ chế biến gỗ và 3 giờ hoàn thiện. Mỗi tháng cửa hàng có không quá 600 giờ để chế biến gỗ và không quá 240 giờ để hoàn thiện. Lợi nhuận dự kiến của mỗi kệ sách là 400 nghìn đồng và mỗi bàn làm việc là 750 nghìn đồng. Mỗi tháng cửa hàng cần làm bao nhiêu sản phẩm mỗi loại để lợi nhuận thu được là lớn nhất nếu bán hết sản phẩm làm ra?
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP