Đáp án đúng: D
- $90^\circ < \alpha < 180^\circ$ nên $\alpha$ nằm trong góc phần tư thứ II.
- Trong góc phần tư thứ II, $\sin(\alpha) > 0$ và $\cos(\alpha) < 0$.
- $\sin(90^\circ - \alpha) = \cos(\alpha) < 0$.
- $\cot(180^\circ + \alpha) = \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} < 0$ (vì $\cos(\alpha) < 0$ và $\sin(\alpha) > 0$).
Vậy, M > 0.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Vì J là trung điểm của CD nên $\overrightarrow{AJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD})$
Vì I là trung điểm của AB nên $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$
Do đó: $\overrightarrow{IJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD}) - \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD}$
Vậy $a = \frac{1}{2}$ và $b = \frac{1}{2}$.
Khi đó $a - b = \frac{1}{2} - \frac{1}{2} = 0$.