JavaScript is required

Câu hỏi:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, E là điểm trên cạnh CD sao cho ED = 3EC. Thiết diện tạo bởi mp(MNE) và tứ diện ABCD là:

undefined.

Tam giác MNE

A.

Tứ giác MNEF với F là điểm bất kì trên cạnh BD

B.

Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC

C.

Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC

Trả lời:

Đáp án đúng: C


MN là đường trung bình của tam giác ABC nên MN // BC

Ta có: \(\left\{ \begin{array}{l}\left( {MNE} \right) \cap \left( {BCD} \right) = E\\\left( {MNE} \right) \supset MN\\\left( {BCD} \right) \supset BD\\MN\parallel BD\end{array} \right. \Rightarrow \) Giao tuyến của (MNE) và (BCD) là đường thẳng qua E và song song với MN và BC. Trong (BCD) qua E kẻ EF // BC \(\left( F\in BC \right)\).

\(\Rightarrow \left( MNE \right)\cap \left( BCD \right)=EF.\) Vậy thiết diện là MNEF có MN // EF \(\Rightarrow \) MNEF là hình thang.

Ta có: \(MN = \frac{1}{2}BC.\)       

\(\begin{array}{l}{\rm{EF}}\parallel {\rm{BC}} \Rightarrow \frac{{EF}}{{BC}} = \frac{{DE}}{{DC}} = \frac{3}{4} \Rightarrow EF = \frac{3}{4}BC\\ \Rightarrow MN \ne EF.\end{array}\)

Do đó MNEF chỉ là hình thang mà không là hình bình hành.

Chọn D.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Bộ Đề Kiểm Tra Giữa Học Kì I - Toán 11 - Các Trường THPT Trên Toàn Quốc không chỉ giúp học sinh củng cố kiến thức đã học mà còn rèn luyện khả năng tư duy logic và giải quyết vấn đề nhanh chóng, chính xác. Đề thi bao gồm các dạng bài tập đa dạng để các em chuẩn bị tốt cho kỳ thi khác.

26/08/2024
0 lượt thi

Câu hỏi liên quan