JavaScript is required

Một nhà đầu tư đang xem xét phân bổ tài sản vào 2 chứng khoán với thông tin như sau:

Chứng khoán A

Chứng khoán B

w

60.0%

40.0%

E(R)

6.0%

10.0%

σ2

0.0036

0.0081

β

0.85

1.02

Cov(A,B)

0.004

Hãy chọn phát biểu đúng:

A.

Tỷ suất sinh lợi của danh mục kết hợp giữa A và B là 8%

B.

Hệ số beta của danh mục kết hợp A và B là 0.85

C.

Tất cả đều sai.

D.

Hệ số tương quan của A và B là 0.74

Trả lời:

Đáp án đúng: D


Để giải quyết câu hỏi này, chúng ta cần tính toán các giá trị của danh mục đầu tư kết hợp giữa chứng khoán A và B, sau đó so sánh với các phát biểu đã cho. 1. **Tính tỷ suất sinh lợi kỳ vọng của danh mục (E(Rp))**: E(Rp) = wA * E(RA) + wB * E(RB) E(Rp) = 0.60 * 6% + 0.40 * 10% E(Rp) = 3.6% + 4% = 7.6% Vậy, phát biểu A sai vì tỷ suất sinh lợi của danh mục là 7.6%, không phải 8%. 2. **Tính hệ số beta của danh mục (βp)**: βp = wA * βA + wB * βB βp = 0.60 * 0.85 + 0.40 * 1.02 βp = 0.51 + 0.408 = 0.918 Vậy, phát biểu B sai vì hệ số beta của danh mục là 0.918, không phải 0.85. 3. **Tính hệ số tương quan (ρAB)**: Độ lệch chuẩn của A (σA) = √(0.0036) = 0.06 Độ lệch chuẩn của B (σB) = √(0.0081) = 0.09 Cov(A, B) = ρAB * σA * σB 0.004 = ρAB * 0.06 * 0.09 ρAB = 0.004 / (0.06 * 0.09) = 0.004 / 0.0054 = 0.7407 Vậy, phát biểu D đúng vì hệ số tương quan của A và B là khoảng 0.74. Vì vậy, đáp án đúng là D.

Câu hỏi liên quan