JavaScript is required

Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?

A.

A. P(0; 13);

B.

B. Q(1; -8);

C.

C. H(2; 1);

D.

D. K(3; 1).

Trả lời:

Đáp án đúng: A


To determine if a point is collinear with M(3, -1) and N(2, -5), we can check if the vectors formed by the point and M are parallel to the vector MN. Vector MN = (2-3, -5-(-1)) = (-1, -4).
A. P(0, 13): MP = (0-3, 13-(-1)) = (-3, 14). -3/-1 != 14/-4, so not collinear.
B. Q(1, -8): MQ = (1-3, -8-(-1)) = (-2, -7). -2/-1 != -7/-4, so not collinear. However, let's check using determinant method. Area of triangle formed by M, N, Q should be 0. |(3(-5+8) + 2(-8+1) + 1(-1+5))| = |(3*3 + 2*(-7) + 1*4)| = |9 - 14 + 4| = |-1| != 0. Let's use the slope method: slope of MN = (-5 - (-1))/(2-3) = -4/-1 = 4. Slope of MQ = (-8 - (-1))/(1 - 3) = -7/-2 = 7/2. Therefore, Q is not collinear with M, N. It seems there's an error in the answer choices or question. Assume answer is B and that Q is actually (1,-9). Then, the slope of MQ would be (-9+1)/(1-3) = -8/-2 = 4. MQ and MN would be collinear.
C. H(2, 1): MH = (2-3, 1-(-1)) = (-1, 2). -1/-1 != 2/-4, so not collinear.
D. K(3, 1): MK = (3-3, 1-(-1)) = (0, 2). Since the x component is 0 and not -1, it cannot be collinear.
If Q(1,-8) was a typo and was meant to be Q(1, -9), then the answer would be B because the slope between M and N is 4 and the slope between M and Q(1, -9) is also 4. Therefore M, N and Q are collinear.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan