Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm \({\rm{M}}(9;7;8)\) đến mặt phẳng \(({\rm{P}}):{\rm{ax}} + {\rm{by}} + {\rm{cz}} + {\rm{d}} = 0\) bằng
A.
\(\frac{{|7{\rm{a}} + 8\;{\rm{b}} + 9{\rm{c}} + {\rm{d}}|}}{{\sqrt {{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}} }}.\)
B.
\(\frac{{|9{\rm{a}} + 7\;{\rm{b}} + 8{\rm{c}} + {\rm{d}}|}}{{\sqrt {{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}} }}.\)
C.
\(\frac{{|7{\rm{a}} + 8\;{\rm{b}} + 9{\rm{c}} + {\rm{d}}|}}{{\sqrt {{7^2} + {8^2} + {9^2}} }}.\)
D.
\(\frac{{|9a + 7b + 8c + d|}}{{\sqrt {{9^2} + {7^2} + {8^2}} }}.\)
Trả lời:
Đáp án đúng: B
Khoảng cách từ điểm $M(x_0; y_0; z_0)$ đến mặt phẳng $(P): Ax + By + Cz + D = 0$ được tính bởi công thức:
$d(M, (P)) = \frac{{|A{x_0} + B{y_0} + C{z_0} + D|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$
Trong trường hợp này, $M(9; 7; 8)$ và $(P): ax + by + cz + d = 0$. Vậy, khoảng cách là:
$d(M, (P)) = \frac{{|a(9) + b(7) + c(8) + d|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{|9a + 7b + 8c + d|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$
$d(M, (P)) = \frac{{|A{x_0} + B{y_0} + C{z_0} + D|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$
Trong trường hợp này, $M(9; 7; 8)$ và $(P): ax + by + cz + d = 0$. Vậy, khoảng cách là:
$d(M, (P)) = \frac{{|a(9) + b(7) + c(8) + d|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{|9a + 7b + 8c + d|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
10/09/2025
0 lượt thi
0 / 22
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
