Câu hỏi:
Một công ty đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và khả năng thắng thầu của dự án 2 là
. Khả năng thắng thầu cả 2 dự án là
.
Gọi là biến cố: “Thắng thầu dự án 1”; gọi
là biến cố: “Thắng thầu dự án 2”.
a) và
là hai biến cố độc lập.
b) Xác suất để công ty thắng thầu đúng 1 dự án bằng .
c) Xác suất để công ty thắng thầu dự án 2 biết công ty thắng thầu dự án 1 là .
d) Xác suất để công ty thắng thầu dự án 2 biết công ty không thắng thầu dự án 1 là .
Trả lời:
Đáp án đúng:
Ta có:
$P(A) * P(B) = \frac{1}{3} * \frac{2}{5} = \frac{2}{15} \neq \frac{1}{5} = P(A \cap B)$.
Vậy A và B không độc lập, nên đáp án A đúng.
Tính xác suất để công ty thắng thầu đúng 1 dự án:
$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A \cap \overline{B}) + P(\overline{A} \cap B) = P(A) - P(A \cap B) + P(B) - P(A \cap B) = \frac{1}{3} - \frac{1}{5} + \frac{2}{5} - \frac{1}{5} = \frac{5 - 3 + 6 - 3}{15} = \frac{5}{15} = \frac{1}{3} \neq \frac{11}{30}$.
Vậy đáp án B sai.
Tính xác suất để công ty thắng thầu dự án 2 biết công ty thắng thầu dự án 1:
$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{5}}{\frac{1}{3}} = \frac{3}{5}$.
Vậy đáp án C đúng.
Tính xác suất để công ty thắng thầu dự án 2 biết công ty không thắng thầu dự án 1:
$P(B|\overline{A}) = \frac{P(\overline{A} \cap B)}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{\frac{2}{5} - \frac{1}{5}}{1 - \frac{1}{3}} = \frac{\frac{1}{5}}{\frac{2}{3}} = \frac{3}{10} \neq \frac{7}{10}$.
Vậy đáp án D sai.
- $P(A) = \frac{1}{3}$
- $P(B) = \frac{2}{5}$
- $P(A \cap B) = \frac{1}{5}$
$P(A) * P(B) = \frac{1}{3} * \frac{2}{5} = \frac{2}{15} \neq \frac{1}{5} = P(A \cap B)$.
Vậy A và B không độc lập, nên đáp án A đúng.
Tính xác suất để công ty thắng thầu đúng 1 dự án:
$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A \cap \overline{B}) + P(\overline{A} \cap B) = P(A) - P(A \cap B) + P(B) - P(A \cap B) = \frac{1}{3} - \frac{1}{5} + \frac{2}{5} - \frac{1}{5} = \frac{5 - 3 + 6 - 3}{15} = \frac{5}{15} = \frac{1}{3} \neq \frac{11}{30}$.
Vậy đáp án B sai.
Tính xác suất để công ty thắng thầu dự án 2 biết công ty thắng thầu dự án 1:
$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{5}}{\frac{1}{3}} = \frac{3}{5}$.
Vậy đáp án C đúng.
Tính xác suất để công ty thắng thầu dự án 2 biết công ty không thắng thầu dự án 1:
$P(B|\overline{A}) = \frac{P(\overline{A} \cap B)}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{\frac{2}{5} - \frac{1}{5}}{1 - \frac{1}{3}} = \frac{\frac{1}{5}}{\frac{2}{3}} = \frac{3}{10} \neq \frac{7}{10}$.
Vậy đáp án D sai.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
