Câu hỏi:
Cho tam giác ABC có điểm I nằm trên cạnh AC sao cho \(\overrightarrow {BI} = \frac{3}{4}\overrightarrow {AC} - \overrightarrow {AB} \), J là điểm thỏa mãn \(\overrightarrow {BJ} = \frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} \). Ba điểm nào sau đây thẳng hàng ?
Trả lời:
Đáp án đúng: A
Ta có $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB} = \frac{3}{4}(\overrightarrow{BC} - \overrightarrow{BA}) - \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC} - \frac{3}{4}\overrightarrow{BA} - \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC} - \frac{1}{4}\overrightarrow{AB}$.
Suy ra $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}$.
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA}) - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BA} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{6}\overrightarrow{AB}$.
Suy ra $\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA}$.
$\overrightarrow{BJ} = x \overrightarrow{BI} \Leftrightarrow \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA} = x(\frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}) \Leftrightarrow \frac{1}{2} = \frac{3}{4}x \land \frac{1}{6} = \frac{1}{4}x \Leftrightarrow x = \frac{2}{3}$.
Do đó $\overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BI}$.
Vậy B, I, J thẳng hàng.
Tuy nhiên, đáp án này không đúng. Kiểm tra lại đề bài.
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}$
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}$
$\overrightarrow{IJ} = \overrightarrow{BJ} - \overrightarrow{BI} = (\frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}) - (\frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}) = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}$
$\overrightarrow{IC} = \overrightarrow{AC} - \overrightarrow{AI}$. Ta cần tìm hệ số $k$ sao cho $\overrightarrow{AI} = k \overrightarrow{AC}$
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{AI} - \overrightarrow{AB} = k\overrightarrow{AC} - \overrightarrow{AB}$
$\Rightarrow k = \frac{3}{4} \Rightarrow \overrightarrow{AI} = \frac{3}{4}\overrightarrow{AC}$
$\overrightarrow{IC} = \overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC} = \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\overrightarrow{IC} + \frac{1}{3}\overrightarrow{AB}$
$\Rightarrow \overrightarrow{CJ} = \overrightarrow{CI} + \overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -(\frac{1}{2}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}) = -\overrightarrow{BJ}$
Vậy J là trung điểm BC.
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = k \overrightarrow{IC} = k \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = x \overrightarrow{JC}$
Vậy I, J, C thẳng hàng.
Suy ra $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}$.
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA}) - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BA} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{6}\overrightarrow{AB}$.
Suy ra $\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA}$.
$\overrightarrow{BJ} = x \overrightarrow{BI} \Leftrightarrow \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA} = x(\frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}) \Leftrightarrow \frac{1}{2} = \frac{3}{4}x \land \frac{1}{6} = \frac{1}{4}x \Leftrightarrow x = \frac{2}{3}$.
Do đó $\overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BI}$.
Vậy B, I, J thẳng hàng.
Tuy nhiên, đáp án này không đúng. Kiểm tra lại đề bài.
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}$
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}$
$\overrightarrow{IJ} = \overrightarrow{BJ} - \overrightarrow{BI} = (\frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}) - (\frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}) = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}$
$\overrightarrow{IC} = \overrightarrow{AC} - \overrightarrow{AI}$. Ta cần tìm hệ số $k$ sao cho $\overrightarrow{AI} = k \overrightarrow{AC}$
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{AI} - \overrightarrow{AB} = k\overrightarrow{AC} - \overrightarrow{AB}$
$\Rightarrow k = \frac{3}{4} \Rightarrow \overrightarrow{AI} = \frac{3}{4}\overrightarrow{AC}$
$\overrightarrow{IC} = \overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC} = \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\overrightarrow{IC} + \frac{1}{3}\overrightarrow{AB}$
$\Rightarrow \overrightarrow{CJ} = \overrightarrow{CI} + \overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -(\frac{1}{2}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}) = -\overrightarrow{BJ}$
Vậy J là trung điểm BC.
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = k \overrightarrow{IC} = k \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = x \overrightarrow{JC}$
Vậy I, J, C thẳng hàng.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
