JavaScript is required

Câu hỏi:

Cho một lò xo có độ cứng k. Khi gắn lò xo với vật nhỏ có khối lượng \[\left( {{m_1} + {m_2}} \right)\]thì tần số dao động điều hòa của con lắc bằng 2 Hz. Nếu gắn lò xo với vật nhỏ có khối lượng \[\left( {{m_1} - {m_2}} \right)\] thì tần số dao động điều hòa của con lắc bằng 4 Hz. Chu kỳ dao động của con lắc trong hai trường hợp, khi gắn lò xo với vật có khối lượng m1 và khi gắn lò xo với vật có khối lượng m2 tương ứng bằng

A.

A. 0,3539 s; 0,3062 s.      

B.

B. 0,3593 s; 0,3206 s.

C.

C. 0,3953 s; 0,3206 s.      

D.
D. 0,3953 s; 0,3062 s.
Trả lời:

Đáp án đúng: A


Ta có tần số $f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$.
  • Khi gắn $m_1 + m_2$: $f_1 = 2 = \frac{1}{2\pi}\sqrt{\frac{k}{m_1+m_2}}$ (1)
  • Khi gắn $m_1 - m_2$: $f_2 = 4 = \frac{1}{2\pi}\sqrt{\frac{k}{m_1-m_2}}$ (2)
Chia (1) cho (2) ta được: $\frac{1}{2} = \sqrt{\frac{m_1-m_2}{m_1+m_2}} \Rightarrow \frac{1}{4} = \frac{m_1-m_2}{m_1+m_2} \Rightarrow m_1+m_2 = 4m_1 - 4m_2 \Rightarrow 5m_2 = 3m_1 \Rightarrow m_1 = \frac{5}{3}m_2$.
Thay $m_1 = \frac{5}{3}m_2$ vào (1) ta có: $2 = \frac{1}{2\pi}\sqrt{\frac{k}{\frac{5}{3}m_2 + m_2}} = \frac{1}{2\pi}\sqrt{\frac{k}{\frac{8}{3}m_2}} \Rightarrow 4 = \frac{1}{4\pi^2} \frac{3k}{8m_2} \Rightarrow \frac{k}{m_2} = \frac{128\pi^2}{3}$.
Khi gắn $m_1$: $f_{m_1} = \frac{1}{2\pi}\sqrt{\frac{k}{m_1}} = \frac{1}{2\pi}\sqrt{\frac{k}{\frac{5}{3}m_2}} = \frac{1}{2\pi}\sqrt{\frac{3k}{5m_2}} = \frac{1}{2\pi}\sqrt{\frac{3}{5} \cdot \frac{128\pi^2}{3}} = \frac{1}{2\pi}\sqrt{\frac{128\pi^2}{5}} = \sqrt{\frac{32}{5}} \approx 2.5298$ Hz. $T_{m_1} = \frac{1}{f_{m_1}} \approx 0.3953$ s.
Khi gắn $m_2$: $f_{m_2} = \frac{1}{2\pi}\sqrt{\frac{k}{m_2}} = \frac{1}{2\pi}\sqrt{\frac{128\pi^2}{3}} = \sqrt{\frac{32}{3}} \approx 3.266$ Hz. $T_{m_2} = \frac{1}{f_{m_2}} \approx 0.3062$ s.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan