Câu hỏi:
Cho hàm số y = f(x) có bảng biến thiên như sau. Hàm số đã cho đồng biến trên khoảng:
Trả lời:
Đáp án đúng: A
Nhìn vào bảng biến thiên, ta thấy hàm số đồng biến (tức $y'$ > 0) trên khoảng $(\frac{1}{2}; +\infty)$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Lời giải:
Đáp án đúng: D
Chu vi hình chữ nhật là $C = 2(x+y)$.
Ta có $x = 3,456 \pm 0,01$ và $y = 12,732 \pm 0,015$.
$x+y = (3,456 + 12,732) \pm (0,01 + 0,015) = 16,188 \pm 0,025$.
$C = 2(16,188 \pm 0,025) = 32,376 \pm 0,05$.
Sai số tuyệt đối của chu vi là $\Delta_C = 0,05$.
Vậy $C = 32,376 \pm 0,05$ và $\Delta_C \leq 0,05$.
Ta có $x = 3,456 \pm 0,01$ và $y = 12,732 \pm 0,015$.
$x+y = (3,456 + 12,732) \pm (0,01 + 0,015) = 16,188 \pm 0,025$.
$C = 2(16,188 \pm 0,025) = 32,376 \pm 0,05$.
Sai số tuyệt đối của chu vi là $\Delta_C = 0,05$.
Vậy $C = 32,376 \pm 0,05$ và $\Delta_C \leq 0,05$.
Lời giải:
Đáp án đúng: D
Gọi D là chân đường vuông góc hạ từ C xuống đường thẳng AB.
Đặt $CD = h$, $AD = x$. Ta có $BD = 80 - x$.
$ an{25^\circ} = \frac{h}{x} \Rightarrow x = \frac{h}{\tan{25^\circ}}$
$ an{42^\circ} = \frac{h}{80-x} \Rightarrow 80 - x = \frac{h}{\tan{42^\circ}} \Rightarrow x = 80 - \frac{h}{\tan{42^\circ}}$
Suy ra $\frac{h}{\tan{25^\circ}} = 80 - \frac{h}{\tan{42^\circ}} \Rightarrow h\left(\frac{1}{\tan{25^\circ}} + \frac{1}{\tan{42^\circ}}\right) = 80$
$\Rightarrow h = \frac{80}{\frac{1}{\tan{25^\circ}} + \frac{1}{\tan{42^\circ}}} = \frac{80}{\frac{1}{0.466} + \frac{1}{0.9}} \approx 86$ m
Đặt $CD = h$, $AD = x$. Ta có $BD = 80 - x$.
$ an{25^\circ} = \frac{h}{x} \Rightarrow x = \frac{h}{\tan{25^\circ}}$
$ an{42^\circ} = \frac{h}{80-x} \Rightarrow 80 - x = \frac{h}{\tan{42^\circ}} \Rightarrow x = 80 - \frac{h}{\tan{42^\circ}}$
Suy ra $\frac{h}{\tan{25^\circ}} = 80 - \frac{h}{\tan{42^\circ}} \Rightarrow h\left(\frac{1}{\tan{25^\circ}} + \frac{1}{\tan{42^\circ}}\right) = 80$
$\Rightarrow h = \frac{80}{\frac{1}{\tan{25^\circ}} + \frac{1}{\tan{42^\circ}}} = \frac{80}{\frac{1}{0.466} + \frac{1}{0.9}} \approx 86$ m
Lời giải:
Đáp án đúng:
Lời giải:
Đáp án đúng:
Lời giải:
Đáp án đúng: C
Ta có $\widehat{C} = 180^{\circ} - \widehat{A} - \widehat{B} = 180^{\circ} - 105^{\circ} - 45^{\circ} = 30^{\circ}$.
Áp dụng định lý sin trong tam giác ABC, ta có:
$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \frac{AB}{AC} = \frac{\sin C}{\sin B} = \frac{\sin 30^{\circ}}{\sin 45^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.
Có vẻ như không có đáp án nào đúng với kết quả này. Tuy nhiên, có thể đề bài hoặc các đáp án có vấn đề. Để giải thích đáp án C, ta xét:
Nếu $\frac{AB}{AC} = \frac{\sqrt{6}}{3}$, thì$\frac{\sin C}{\sin B} = \frac{\sqrt{6}}{3} \Rightarrow \frac{\sin 30}{\sin B} = \frac{\sqrt{6}}{3} \Rightarrow \sin B = \frac{\sin 30 \cdot 3}{\sqrt{6}} = \frac{\frac{1}{2} \cdot 3}{\sqrt{6}} = \frac{3}{2\sqrt{6}} = \frac{3\sqrt{6}}{12} = \frac{\sqrt{6}}{4} \approx 0.612 \Rightarrow B \approx 37.76^{\circ}$
Nếu đề bài cho $\widehat{A}=75^{\circ}$ thì $\widehat{C} = 180^{\circ} - 75^{\circ} - 45^{\circ}=60^{\circ}$.
Khi đó $\frac{AB}{AC}=\frac{\sin C}{\sin B} = \frac{\sin 60^{\circ}}{\sin 45^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}$ nên không có đáp án đúng.
Tuy nhiên, nếu góc A là $105^\circ$ thì góc C là $30^\circ$, ta có: $\frac{AB}{AC} = \frac{\sin C}{\sin B} = \frac{\sin 30}{\sin 45} = \frac{1/2}{\sqrt{2}/2} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. Vậy đáp án B đúng. (Có lẽ đáp án C là một lỗi đánh máy). Nếu đáp án C là $\frac{\sqrt{3}}{3}$ thì $\frac{AB}{AC} = \frac{\sqrt{3}}{3}$ không thoả mãn.
Xét trường hợp khác: $\frac{AB}{AC} = \frac{BC}{AC}$. Áp dụng định lý hàm sin ta có $\frac{BC}{\sin A} = \frac{AC}{\sin B}$.
$\frac{BC}{AC} = \frac{\sin A}{\sin B} = \frac{\sin 105}{\sin 45} = \frac{\sin(60+45)}{\sin 45} = \frac{\sin 60 \cos 45 + \cos 60 \sin 45}{\sin 45} = \sin 60 + \cos 60 = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3}+1}{2} \approx 1.366$. Không có đáp án nào đúng.
Áp dụng định lý sin trong tam giác ABC, ta có:
$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \frac{AB}{AC} = \frac{\sin C}{\sin B} = \frac{\sin 30^{\circ}}{\sin 45^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.
Có vẻ như không có đáp án nào đúng với kết quả này. Tuy nhiên, có thể đề bài hoặc các đáp án có vấn đề. Để giải thích đáp án C, ta xét:
Nếu $\frac{AB}{AC} = \frac{\sqrt{6}}{3}$, thì$\frac{\sin C}{\sin B} = \frac{\sqrt{6}}{3} \Rightarrow \frac{\sin 30}{\sin B} = \frac{\sqrt{6}}{3} \Rightarrow \sin B = \frac{\sin 30 \cdot 3}{\sqrt{6}} = \frac{\frac{1}{2} \cdot 3}{\sqrt{6}} = \frac{3}{2\sqrt{6}} = \frac{3\sqrt{6}}{12} = \frac{\sqrt{6}}{4} \approx 0.612 \Rightarrow B \approx 37.76^{\circ}$
Nếu đề bài cho $\widehat{A}=75^{\circ}$ thì $\widehat{C} = 180^{\circ} - 75^{\circ} - 45^{\circ}=60^{\circ}$.
Khi đó $\frac{AB}{AC}=\frac{\sin C}{\sin B} = \frac{\sin 60^{\circ}}{\sin 45^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}$ nên không có đáp án đúng.
Tuy nhiên, nếu góc A là $105^\circ$ thì góc C là $30^\circ$, ta có: $\frac{AB}{AC} = \frac{\sin C}{\sin B} = \frac{\sin 30}{\sin 45} = \frac{1/2}{\sqrt{2}/2} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. Vậy đáp án B đúng. (Có lẽ đáp án C là một lỗi đánh máy). Nếu đáp án C là $\frac{\sqrt{3}}{3}$ thì $\frac{AB}{AC} = \frac{\sqrt{3}}{3}$ không thoả mãn.
Xét trường hợp khác: $\frac{AB}{AC} = \frac{BC}{AC}$. Áp dụng định lý hàm sin ta có $\frac{BC}{\sin A} = \frac{AC}{\sin B}$.
$\frac{BC}{AC} = \frac{\sin A}{\sin B} = \frac{\sin 105}{\sin 45} = \frac{\sin(60+45)}{\sin 45} = \frac{\sin 60 \cos 45 + \cos 60 \sin 45}{\sin 45} = \sin 60 + \cos 60 = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3}+1}{2} \approx 1.366$. Không có đáp án nào đúng.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 40:
b) Tìm giá trị bất thường.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu1137 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu953 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu1057 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu443 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu535 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Vật Lí Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
181 tài liệu503 lượt tải
ĐĂNG KÝ GÓI THI VIP
- Truy cập hơn 100K đề thi thử và chính thức các năm
- 2M câu hỏi theo các mức độ: Nhận biết – Thông hiểu – Vận dụng
- Học nhanh với 10K Flashcard Tiếng Anh theo bộ sách và chủ đề
- Đầy đủ: Mầm non – Phổ thông (K12) – Đại học – Người đi làm
- Tải toàn bộ tài liệu trên TaiLieu.VN
- Loại bỏ quảng cáo để tăng khả năng tập trung ôn luyện
- Tặng 15 ngày khi đăng ký gói 3 tháng, 30 ngày với gói 6 tháng và 60 ngày với gói 12 tháng.
77.000 đ/ tháng