Câu hỏi:
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).
b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Trả lời:
Đáp án đúng:
Từ bảng biến thiên ta có:
- Hàm số đồng biến trên $(-\infty; 1)$ và $(1; +\infty)$ nên a sai.
- Hàm số không có giá trị nhỏ nhất vì không tồn tại $x$ để $f(x) = 2$. Do đó b sai.
- Đồ thị hàm số có tiệm cận đứng $x=1$ và tiệm cận ngang $y=2$. Suy ra tâm đối xứng của đồ thị hàm số là $I(1;2)$. Do đó c đúng.
- Để $\left| {\frac{{ax + b}}{{cx + d}}} \right| = m$ có hai nghiệm phân biệt thì $m > 2$ hoặc $m=0$. Vì $m$ nguyên và $m \in [-2024; 2024]$ nên $m \in \{3, 4, ..., 2024\} \cup \{0\}$. Vậy có $2022+1 = 2023$ giá trị $m$. Do đó d sai.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
