Câu hỏi:
Mệnh đề nào sau đây đúng?
Trả lời:
Đáp án đúng: A
Một tứ diện có 4 mặt (mỗi mặt là một tam giác) và 6 cạnh.
Vậy đáp án đúng là: Tứ diện có 4 mặt và 6 cạnh.
Vậy đáp án đúng là: Tứ diện có 4 mặt và 6 cạnh.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Lời giải:
Đáp án đúng: D
Ta có $CG$ và $HE$ chéo nhau nên đáp án D sai.
Chọn D.
Chọn D.
Lời giải:
Đáp án đúng: B
Ta có công thức biến đổi tích thành tổng:
$\cos(a+b)\cos(a-b) = \frac{1}{2} [\cos((a+b)+(a-b)) + \cos((a+b)-(a-b))] = \frac{1}{2} [\cos(2a) + \cos(2b)] $
Sử dụng công thức nhân đôi, ta có:
$\cos(2a) = 2\cos^2(a) - 1 = 2(\frac{1}{3})^2 - 1 = 2(\frac{1}{9}) - 1 = \frac{2}{9} - 1 = -\frac{7}{9}$
$\cos(2b) = 2\cos^2(b) - 1 = 2(\frac{1}{4})^2 - 1 = 2(\frac{1}{16}) - 1 = \frac{1}{8} - 1 = -\frac{7}{8}$
Do đó:
$\cos(a+b)\cos(a-b) = \frac{1}{2} [-\frac{7}{9} - \frac{7}{8}] = \frac{1}{2} [-\frac{56}{72} - \frac{63}{72}] = \frac{1}{2} [-\frac{119}{72}] = -\frac{119}{144}$
Vậy đáp án đúng là B.
$\cos(a+b)\cos(a-b) = \frac{1}{2} [\cos((a+b)+(a-b)) + \cos((a+b)-(a-b))] = \frac{1}{2} [\cos(2a) + \cos(2b)] $
Sử dụng công thức nhân đôi, ta có:
$\cos(2a) = 2\cos^2(a) - 1 = 2(\frac{1}{3})^2 - 1 = 2(\frac{1}{9}) - 1 = \frac{2}{9} - 1 = -\frac{7}{9}$
$\cos(2b) = 2\cos^2(b) - 1 = 2(\frac{1}{4})^2 - 1 = 2(\frac{1}{16}) - 1 = \frac{1}{8} - 1 = -\frac{7}{8}$
Do đó:
$\cos(a+b)\cos(a-b) = \frac{1}{2} [-\frac{7}{9} - \frac{7}{8}] = \frac{1}{2} [-\frac{56}{72} - \frac{63}{72}] = \frac{1}{2} [-\frac{119}{72}] = -\frac{119}{144}$
Vậy đáp án đúng là B.
Lời giải:
Đáp án đúng: C
Ta có công thức tính tổng $n$ số hạng đầu tiên của cấp số cộng là: $S_n = \frac{n}{2}[2u_1 + (n-1)d]$.
Trong trường hợp này, ta có $n=20$, $u_1=4$, và $d=3$.
Thay các giá trị này vào công thức, ta được:
$S_{20} = \frac{20}{2}[2(4) + (20-1)3] = 10[8 + 19(3)] = 10[8 + 57] = 10[65] = 650$.
Vậy $S_{20} = 650$.
Trong trường hợp này, ta có $n=20$, $u_1=4$, và $d=3$.
Thay các giá trị này vào công thức, ta được:
$S_{20} = \frac{20}{2}[2(4) + (20-1)3] = 10[8 + 19(3)] = 10[8 + 57] = 10[65] = 650$.
Vậy $S_{20} = 650$.
Lời giải:
Đáp án đúng: C
Ta có:
Vì vậy, các đáp án A, B, D đúng.
Đáp án C sai vì $SA$ và $(SCD)$ cắt nhau tại $S$
- $BC // AD \subset (SAD) => BC // (SAD)$
- $CD // AB \subset (SAB) => CD // (SAB)$
- $AD // BC \subset (SBC) => AD // (SBC)$
Vì vậy, các đáp án A, B, D đúng.
Đáp án C sai vì $SA$ và $(SCD)$ cắt nhau tại $S$
Lời giải:
Đáp án đúng:
a) Tập xác định của hàm số $y = \sin(2x - \frac{\pi}{2})$ là $R$ (tất cả các số thực), vì hàm sin xác định trên toàn bộ trục số thực. Do đó, tập xác định không phải là $[-1, 1]$. Vậy câu a) là Sai.
b) Để xét tính chẵn lẻ của hàm số, ta tính $f(-x) = \sin(2(-x) - \frac{\pi}{2}) = \sin(-2x - \frac{\pi}{2}) = -\sin(2x + \frac{\pi}{2}) = -\cos(2x)$. Vì $f(-x) \neq f(x)$ và $f(-x) \neq -f(x)$, nên hàm số không chẵn cũng không lẻ. Vậy câu b) là Sai.
c) Chu kỳ của hàm số $y = \sin(ax + b)$ là $T = \frac{2\pi}{|a|}$. Trong trường hợp này, $a = 2$, nên chu kỳ là $T = \frac{2\pi}{2} = \pi$. Vậy câu c) là Đúng.
d) Xét hàm số $y = \sin(2x - \frac{\pi}{2})$ trên $\left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right]$. Đặt $t = 2x - \frac{\pi}{2}$. Khi $x = \frac{-\pi}{8}$, $t = 2(\frac{-\pi}{8}) - \frac{\pi}{2} = -\frac{\pi}{4} - \frac{\pi}{2} = -\frac{3\pi}{4}$. Khi $x = \frac{\pi}{3}$, $t = 2(\frac{\pi}{3}) - \frac{\pi}{2} = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}$. Vậy $t \in [-\frac{3\pi}{4}; \frac{\pi}{6}]$. Vì $\sin(t)$ đạt giá trị lớn nhất bằng 1 khi $t = \frac{\pi}{2}$, và $\frac{\pi}{2}$ không thuộc $[-\frac{3\pi}{4}; \frac{\pi}{6}]$, ta cần xét các giá trị đầu mút và các điểm tới hạn. $\sin(\frac{\pi}{6}) = \frac{1}{2}$ và $\sin(-\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}$. Giá trị lớn nhất của hàm số trên khoảng đã cho là $\frac{1}{2}$. Vậy câu d) là Sai.
b) Để xét tính chẵn lẻ của hàm số, ta tính $f(-x) = \sin(2(-x) - \frac{\pi}{2}) = \sin(-2x - \frac{\pi}{2}) = -\sin(2x + \frac{\pi}{2}) = -\cos(2x)$. Vì $f(-x) \neq f(x)$ và $f(-x) \neq -f(x)$, nên hàm số không chẵn cũng không lẻ. Vậy câu b) là Sai.
c) Chu kỳ của hàm số $y = \sin(ax + b)$ là $T = \frac{2\pi}{|a|}$. Trong trường hợp này, $a = 2$, nên chu kỳ là $T = \frac{2\pi}{2} = \pi$. Vậy câu c) là Đúng.
d) Xét hàm số $y = \sin(2x - \frac{\pi}{2})$ trên $\left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right]$. Đặt $t = 2x - \frac{\pi}{2}$. Khi $x = \frac{-\pi}{8}$, $t = 2(\frac{-\pi}{8}) - \frac{\pi}{2} = -\frac{\pi}{4} - \frac{\pi}{2} = -\frac{3\pi}{4}$. Khi $x = \frac{\pi}{3}$, $t = 2(\frac{\pi}{3}) - \frac{\pi}{2} = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}$. Vậy $t \in [-\frac{3\pi}{4}; \frac{\pi}{6}]$. Vì $\sin(t)$ đạt giá trị lớn nhất bằng 1 khi $t = \frac{\pi}{2}$, và $\frac{\pi}{2}$ không thuộc $[-\frac{3\pi}{4}; \frac{\pi}{6}]$, ta cần xét các giá trị đầu mút và các điểm tới hạn. $\sin(\frac{\pi}{6}) = \frac{1}{2}$ và $\sin(-\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}$. Giá trị lớn nhất của hàm số trên khoảng đã cho là $\frac{1}{2}$. Vậy câu d) là Sai.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026
177 tài liệu315 lượt tải

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026
107 tài liệu758 lượt tải

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026
111 tài liệu1058 lượt tải

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026
111 tài liệu558 lượt tải

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
111 tài liệu782 lượt tải

Trọn Bộ Giáo Án Word & PowerPoint Địa Lí 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026
111 tài liệu0 lượt tải
ĐĂNG KÝ GÓI THI VIP
- Truy cập hơn 100K đề thi thử và chính thức các năm
- 2M câu hỏi theo các mức độ: Nhận biết – Thông hiểu – Vận dụng
- Học nhanh với 10K Flashcard Tiếng Anh theo bộ sách và chủ đề
- Đầy đủ: Mầm non – Phổ thông (K12) – Đại học – Người đi làm
- Tải toàn bộ tài liệu trên TaiLieu.VN
- Loại bỏ quảng cáo để tăng khả năng tập trung ôn luyện
- Tặng 15 ngày khi đăng ký gói 3 tháng, 30 ngày với gói 6 tháng và 60 ngày với gói 12 tháng.
77.000 đ/ tháng