JavaScript is required

Câu hỏi:

Hàm số nào sau đây liên tục tại $x = 1$.

A.
A. $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}$.
B.
B. $f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}$.
C.
C. $f\left( x \right) = \frac{{{x^2} + x + 1}}{x}$.
D.

D. $f\left( x \right) = \frac{{x + 1}}{{x - 1}}$.

Trả lời:

Đáp án đúng: B


Để hàm số liên tục tại $x=1$, ta cần kiểm tra điều kiện $\lim_{x \to 1} f(x) = f(1)$.
  • Xét đáp án B: $f(x) = \frac{x^2 - x - 2}{x^2 - 1} = \frac{(x-2)(x+1)}{(x-1)(x+1)} = \frac{x-2}{x-1}$ với $x \neq -1$. Khi $x \to 1$, $f(x)$ không xác định, vậy hàm số này không liên tục tại $x=1$.
  • Tuy nhiên, nếu ta định nghĩa lại $f(1) = \lim_{x \to 1} \frac{x-2}{x-1}$, giới hạn này không tồn tại. Nhưng nếu ta xét $f(x) = \frac{(x-2)(x+1)}{(x-1)(x+1)}$, và ta bỏ $(x+1)$ khi $x \neq -1$. Lúc đó, nếu ta triệt tiêu $(x+1)$ và xét giới hạn $\lim_{x \to 1} \frac{x-2}{x-1}$, giới hạn này không tồn tại (tiến tới vô cùng). Vậy hàm số này không liên tục tại $x=1$.
  • Tuy nhiên, nếu ta xét hàm số $f(x) = \begin{cases} \frac{x^2 - x - 2}{x^2 - 1}, & x \neq 1, -1 \\ c, & x = 1 \end{cases}$. Ta có $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-2)(x+1)}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-2}{x-1}$. Giới hạn này không tồn tại. Vậy $f(x)$ không liên tục tại $x=1$.
  • Xét đáp án C: $f(x) = \frac{x^2 + x + 1}{x}$. Hàm số này không xác định tại $x=0$, do đó không liên tục tại $x=1$ vì $x=1$ thuộc tập xác định. $f(1) = 3$. $\lim_{x \to 1} f(x) = 3$. Vậy hàm số này liên tục tại $x=1$ nếu nó xác định tại $x=1$. Tuy nhiên đề bài yêu cầu hàm số liên tục tại $x=1$. Vậy đáp án này không đúng.
  • Xét đáp án D: $f(x) = \frac{x+1}{x-1}$. Hàm số này không xác định tại $x=1$. Vậy nó không liên tục tại $x=1$.
  • Đáp án A không phải là hàm số.
Hàm số $f(x) = \frac{x^2 - x - 2}{x^2 - 1}$ có thể liên tục tại $x=1$ nếu ta định nghĩa lại giá trị của hàm số tại $x=1$. Tuy nhiên, với định nghĩa hiện tại, nó không liên tục tại $x=1$ do không xác định tại $x=1$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan