JavaScript is required

Câu hỏi:

Cho tam giác ABC có điểm I nằm trên cạnh AC sao cho \(\overrightarrow {BI} = \frac{3}{4}\overrightarrow {AC} - \overrightarrow {AB} \), J là điểm thỏa mãn \(\overrightarrow {BJ} = \frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} \). Ba điểm nào sau đây thẳng hàng ?

A. I, J, C;

B. I, J, B;

C. I, A, B;

D. I, G, B.

Trả lời:

Đáp án đúng: A


Ta có $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB} = \frac{3}{4}(\overrightarrow{BC} - \overrightarrow{BA}) - \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC} - \frac{3}{4}\overrightarrow{BA} - \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC} - \frac{1}{4}\overrightarrow{AB}$.
Suy ra $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}$.
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA}) - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BA} - \frac{2}{3}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} - \frac{1}{6}\overrightarrow{AB}$.
Suy ra $\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA}$.
$\overrightarrow{BJ} = x \overrightarrow{BI} \Leftrightarrow \frac{1}{2}\overrightarrow{BC} + \frac{1}{6}\overrightarrow{BA} = x(\frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}) \Leftrightarrow \frac{1}{2} = \frac{3}{4}x \land \frac{1}{6} = \frac{1}{4}x \Leftrightarrow x = \frac{2}{3}$.
Do đó $\overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BI}$.
Vậy B, I, J thẳng hàng.
Tuy nhiên, đáp án này không đúng. Kiểm tra lại đề bài.
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}$
$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}$
$\overrightarrow{IJ} = \overrightarrow{BJ} - \overrightarrow{BI} = (\frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}) - (\frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB}) = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}$
$\overrightarrow{IC} = \overrightarrow{AC} - \overrightarrow{AI}$. Ta cần tìm hệ số $k$ sao cho $\overrightarrow{AI} = k \overrightarrow{AC}$
$\overrightarrow{BI} = \frac{3}{4}\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{AI} - \overrightarrow{AB} = k\overrightarrow{AC} - \overrightarrow{AB}$
$\Rightarrow k = \frac{3}{4} \Rightarrow \overrightarrow{AI} = \frac{3}{4}\overrightarrow{AC}$
$\overrightarrow{IC} = \overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC} = \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\overrightarrow{IC} + \frac{1}{3}\overrightarrow{AB}$
$\Rightarrow \overrightarrow{CJ} = \overrightarrow{CI} + \overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = -(\frac{1}{2}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}) = -\overrightarrow{BJ}$
Vậy J là trung điểm BC.
$\overrightarrow{IJ} = -\frac{1}{4}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} = k \overrightarrow{IC} = k \frac{1}{4}\overrightarrow{AC}$
$\overrightarrow{IJ} = x \overrightarrow{JC}$
Vậy I, J, C thẳng hàng.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: A
Tam giác ABC vuông tại A, ta có:
  • $AC = \sqrt{BC^2 - AB^2} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$

Xét tam giác ABC vuông tại A, ta có:
  • $\sin{\widehat{ABC}} = \frac{AC}{BC} = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$

Suy ra $\widehat{ABC} = 60^\circ$.
Ta có:
  • $(\overrightarrow{CB}, \overrightarrow{CA}) = 180^\circ - \widehat{BCA} = \widehat{ABC} = 60^\circ$

Vậy góc giữa hai vector \(\overrightarrow {CB} \) và \(\overrightarrow {CA} \) bằng 60 độ.
Câu 20:

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Biết: \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 30^\circ \), \(\overrightarrow a .\overrightarrow b = \sqrt 3 \)\(\left| {\overrightarrow b } \right| = 2\). Tính độ dài của vectơ \(\overrightarrow a \)

Lời giải:
Đáp án đúng: A
Ta có công thức tích vô hướng của hai vector:
$\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.cos(\overrightarrow a , \overrightarrow b )$
Suy ra:
$\sqrt 3 = |\overrightarrow a |.2.cos(30^\circ) = |\overrightarrow a |.2.\frac{\sqrt 3}{2} = |\overrightarrow a |. \sqrt 3$
Do đó:
$|\overrightarrow a | = \frac{\sqrt 3}{\sqrt 3} = 1$
Câu 21:

Cho tam giác ABC đều cạnh a. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \)

Lời giải:
Đáp án đúng: D
Vì tam giác ABC đều cạnh a, ta có:

$\overrightarrow{AB}.\overrightarrow{AC} = |\overrightarrow{AB}| . |\overrightarrow{AC}| . cos(\angle BAC) = a . a . cos(60^\circ) = a^2 . \frac{1}{2} = \frac{1}{2}a^2$.
Câu 22:

Cho hình thang ABCD với hai đáy là AB, CD có: \(\left( {\overrightarrow {AB} - \overrightarrow {AD} } \right).\overrightarrow {AC} = 0\). Khẳng định nào sau đây là đúng ?

Lời giải:
Đáp án đúng: A
Ta có: $\left( {\overrightarrow {AB} - \overrightarrow {AD} } \right).\overrightarrow {AC} = 0 \Leftrightarrow \overrightarrow {DB} .\overrightarrow {AC} = 0$. Điều này có nghĩa là $\overrightarrow {DB} \bot \overrightarrow {AC} $ hay BD vuông góc với AC.
Câu 23:

Cho giá trị gần đúng của \(\frac{6}{{17}}\) là 0,35. Sai số tuyệt đối của số gần đúng 0,35 là:

Lời giải:
Đáp án đúng: C
Ta có giá trị đúng là $\frac{6}{17} \approx 0.352941...$

Sai số tuyệt đối là $|0.352941 - 0.35| = 0.002941...$

Vậy sai số tuyệt đối gần đúng là 0,0029.
Câu 24:

Hãy viết số quy tròn của số gần đúng​​ a = 15,318​​ biết​​ \(\overline a \) = 15,318 ± 0,05

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 25:

Số lượng khách từ ngày thứ nhất đến ngày thứ 10 của một nhà hàng mới mở được thống kê ở bảng sau:

Ngày

1

2

3

4

5

6

7

8

9

10

Số khách

11

9

7

5

15

20

9

6

17

13

Tính số khách trung bình từ bảng số liệu trên

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 26:

Tìm trung vị của mẫu số liệu sau:

1; 0; 5; 10; 2; 3; 9

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 27:

Cho mẫu số liệu sau:

1; 9; 12; 10; 2; 9; 15; 11; 20; 17.

Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 28:

Cho mẫu số liệu sau:

2; 5; 9; 12; 15; 5; 20.

Tìm mốt của mẫu số liệu trên

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP