JavaScript is required

Câu hỏi:

Một khu đất hình thang cân \(ABCD\) có độ dài các cạnh đáy lần lượt là 30 m và 36 m và chiều cao là 25 m. Trong khu đất đó, người ta đào một cái ao hình vuông \(EFGH\) như hình vẽ, phần đất còn lại trồng hoa.

s (ảnh 1)

Để giữ bờ, người ta trồng cây xung quanh bờ ao, biết rằng cây đầu tiên trồng ở điểm \(E\) và cứ 3 m thì người ta trồng một cây. Hỏi quanh bờ ao, trồng được bao nhiêu cây?

Trả lời:

Trả lời:

Đáp án đúng:


Do độ dài cạnh hình vuông \(EFGH\) là 15 m, mà 15 chia hết cho 3 và \(15:3 = 5\) nên ở mỗi đỉnh của hình vuông đều có một cây và trên mỗi cạnh trồng được 5 cây.
Cách 1: Như vậy, trên 4 cạnh sẽ trồng được \(4 \cdot 5 = 20\) (cây).
Tuy nhiên, mỗi cây ở mỗi đỉnh đã được tính 2 lần nên số cây thực tế trồng được là: \(20 - 4 = 16\) (cây).
Cách 2: Như vậy, trên mỗi cạnh, nếu không tính 2 cây trồng ở hai đỉnh thì sẽ trồng thêm được \(5 - 2 = 3\) (cây).
Trên 4 cạnh, không tính cây trồng được ở các đỉnh, sẽ trồng được \(4 \cdot 3 = 12\) (cây).
Khi đó, số cây thực tế trồng được là: \(12 + 4 = 16\) (cây).

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan