Ta có: $\sin(x + \frac{\pi}{3}) + \sin(2x) = 0$
$\Leftrightarrow 2\sin(\frac{3x + \frac{\pi}{3}}{2})\cos(\frac{-x + \frac{\pi}{3}}{2}) = 0$
$\Leftrightarrow \left[ \begin{array}{l}\sin(\frac{3x}{2} + \frac{\pi}{6}) = 0 \\ \cos(\frac{-x}{2} + \frac{\pi}{6}) = 0 \end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l}\frac{3x}{2} + \frac{\pi}{6} = k\pi \\ \frac{-x}{2} + \frac{\pi}{6} = \frac{\pi}{2} + k\pi \end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l}x = -\frac{\pi}{9} + k\frac{2\pi}{3} \\ x = -\frac{2\pi}{3} - 2k\pi \end{array} \right. (k \in \mathbb{Z})$