Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the best answer to each of the following questions from 31 to 40.
Biting into a ripe, juicy fruit brings a smile to many people’s faces. But eating that same fruit a week before it is ripe probably wouldn’t be as enjoyable! Unripe fruits are often hard and bitter, but that serves a purpose. The hard exterior of an unripe fruit protects the developing seed inside. After a seed fully develops inside the fruit, the fruit changes color, softens, and gets sweeter to become more attractive to animals and humans. These organisms eat the fruit and spread its seeds, ensuring the plant’s survival and regrowth.
But how does a fruit ripen? The ripening process involves many complex chemical reactions. When a fruit ripens, it goes through a chemical change. A chemical change happens when bonds within molecules break, and the atoms that once formed them regroup into new molecules. Chemical changes are irreversible. Once a fruit ripens, it cannot become unripe again.
One molecule responsible for this chemical change is ethylene. Ethylene (C2H4) is a colorless gas made up of carbon and hydrogen atoms. (I). It is a naturally occurring molecule in the atmosphere. (II). It is also an important plant hormone. (III). Plants release ethylene through the growing tips of roots, flowers, and ripening fruit. (IV). Although ethylene serves other purposes in plants, one of its main purposes is to trigger the chemical reactions that cause fruits to ripen. As the fruit matures, oxygen in the air helps stimulate the production of ethylene. This ethylene production is a signal that begins fruit ripening. For that reason, unripe fruits have low levels of ethylene, while ripe fruits have higher levels of ethylene. Most fruits produce ethylene and respond to ethylene in the atmosphere.
Although fruits require ethylene to ripen, different types of fruits respond to this molecule in two distinct ways: non-climacteric fruits and climacteric fruits. Non-climacteric fruits do not ripen after harvesting. They produce very little ethylene of their own. Climacteric fruits, on the other hand, continue to ripen after they are picked. These fruits produce a large amount of ethylene. Climacteric fruits can also speed up the ripening process of other fruits nearby since they release high levels of ethylene into the air.
Where in the passage does the following sentence best fit in paragraph 3?
“Plant hormones are chemicals produced by plants that control their growth, reproduction, maturation, and decay.”