Câu hỏi:
Cho 40 tấm thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn.
Trả lời:
Đáp án đúng: D
Số phần tử của không gian mẫu là: \(n(\Omega)=C_{40}^{3}=9880\)
Gọi \(A\) là biến cố để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn.
TH1: 2 thẻ ghi số lẻ; 1 thẻ ghi số chẵn: \(C_{20}^{2} \cdot C_{20}^{1}=3800\)
TH2: 3 thẻ ghi số chẵn: \(C_{20}^{3}=1140\)
Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \(\frac{3800+1140}{9880}=\frac{1}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
28/05/2025
0 lượt thi
0 / 50
Câu hỏi liên quan

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
