JavaScript is required

Câu hỏi:

Xác suất để công ty thuê một trong hai công ty vệ tinh tư vấn lần lượt là . Theo kinh nghiệm khả năng phát sinh thêm chi phí khi sử dụng dịch vụ tư vấn của công ty lần lượt là .

a) Xác suất để có phát sinh thêm chi phí khi sử dụng dịch vụ tư vấn là .

b) Biết có phát sinh thêm chi phí khi sử dụng dịch vụ tư vấn. Xác suất để thuê công ty tư vấn là .

c) Biết có phát sinh thêm chi phí khi sử dụng dịch vụ tư vấn. Xác suất để thuê công ty tư vấn là .

d) Biết không phát sinh thêm chi phí khi sử dụng dịch vụ tư vấn. Xác suất để thuê công ty tư vấn là .

Trả lời:

Đáp án đúng:


Gọi $Y$ là biến cố công ty $X$ thuê công ty $Y$ tư vấn, $Z$ là biến cố công ty $X$ thuê công ty $Z$ tư vấn, $A$ là biến cố công ty $X$ phát sinh thêm chi phí.
Ta có: $P(Y) = 0.8$, $P(Z) = 0.7$, $P(A|Y) = 0.3$, $P(A|Z) = 0.6$.
a) $P(A) = P(Y)P(A|Y) + P(Z)P(A|Z) - P(Y \cap Z)P(A|Y \cap Z)$
Do $Y$ và $Z$ là hai biến cố độc lập nên $P(Y \cap Z) = P(Y)P(Z) = 0.8 \times 0.7 = 0.56$.
Giả sử nếu thuê cả hai công ty thì xác suất phát sinh thêm chi phí là 1, nên $P(A|Y \cap Z) = 1$.
Vậy $P(A) = 0.8 \times 0.3 + 0.7 \times 0.6 - 0.56 \times 1 = 0.24 + 0.42 - 0.56 = 0.1.
Tuy nhiên đề bài có lẽ đang hỏi nếu thuê 1 trong 2 công ty, khi đó:
$P(A)=P(Y)P(A|Y)+P(Z)P(A|Z) = 0.8(0.3) + 0.7(0.6) = 0.24 + 0.42 = 0.66$ (nếu $Y, Z$ độc lập)
Hoặc, ta phải hiểu là xác suất thuê *mỗi* công ty, tức là:
$P(Y \cup Z) = P(Y) + P(Z) - P(Y \cap Z) = 0.8 + 0.7 - 1 = 0.5$ (vì tổng xác suất phải bằng 1)
Khi đó: $P(A) = 0.3P(Y) + 0.6P(Z) = 0.3(0.8) + 0.6(0.7) = 0.24 + 0.42 = 0.66$ (nếu $Y, Z$ độc lập)
Nếu $Y$ và $Z$ độc lập: $P(Y) + P(Z) \le 1$, tức $P(Y \cup Z) = P(Y) + P(Z) - P(YZ)$. Khi đó tính được $P(A)$
b) $P(Y|A) = \frac{P(Y)P(A|Y)}{P(A)} = \frac{0.8 \times 0.3}{0.65} = \frac{0.24}{0.66} = \frac{12}{33} = \frac{4}{11} \approx 0.3636$.
Tuy nhiên, nếu dùng công thức Bayes với biến cố đối:
$P(Y|A) = \frac{P(A|Y)P(Y)}{P(A)} = \frac{0.3*0.8}{0.8*0.3 + 0.7*0.6} = \frac{0.24}{0.24+0.42} = \frac{0.24}{0.66} = \frac{4}{11} \approx 0.3636$.
c) $P(Z|A) = \frac{P(Z)P(A|Z)}{P(A)} = \frac{0.7 \times 0.6}{0.66} = \frac{0.42}{0.66} = \frac{7}{11} \approx 0.6364$.
d) $P(\overline{A}) = 1 - P(A) = 1 - 0.66 = 0.34$.
$P(Y|\overline{A}) = \frac{P(Y)P(\overline{A}|Y)}{P(\overline{A})} = \frac{0.8 \times 0.7}{0.34} = \frac{0.56}{0.34} = \frac{28}{17} \approx 1.647$.
Có vẻ như có lỗi ở đề, đáp án đúng nhất là $a) 0.66; b) 0.3636; c) 0.6364; d) 1.647$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan